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Preface

This book is intended for a first year graduate course in econometrics. Courses requiring matrix
algebra as a pre-requisite to econometrics can start with Chapter 7. Chapter 2 has a quick
refresher on some of the required background needed from statistics for the proper understanding
of the material in this book. For an advanced undergraduate/masters class not requiring matrix
algebra, one can structure a course based on Chapter 1; Section 2.6 on descriptive statistics;
Chapters 3-6; Section 11.1 on simultaneous equations; and Chapter 14 on time-series analysis.

This book teaches some of the basic econometric methods and the underlying assumptions
behind them. Estimation, hypotheses testing and prediction are three recurrent themes in
this book. Some uses of econometric methods include (i) empirical testing of economic the-
ory, whether it is the permanent income consumption theory or purchasing power parity, (ii)
forecasting, whether it is GNP or unemployment in the U.S. economy or future sales in the com-
puter industry. (iii) Estimation of price elasticities of demand, or returns to scale in production.
More importantly, econometric methods can be used to simulate the effect of policy changes
like a tax increase on gasoline consumption, or a ban on advertising on cigarette consumption.

It is left to the reader to choose among the available econometric/statistical software to use,
like EViews, SAS, STATA, TSP, SHAZAM, Microfit, PcGive, LIMDEP, and RATS, to mention
a few. The empirical illustrations in the book utilize a variety of these software packages. Of
course, these packages have different advantages and disadvantages. However, for the basic
coverage in this book, these differences may be minor and more a matter of what software the
reader is familiar or comfortable with. In most cases, I encourage my students to use more
than one of these packages and to verify these results using simple programming languages like
GAUSS, OX, R and MATLAB.

This book is not meant to be encyclopedic. I did not attempt the coverage of Bayesian
econometrics simply because it is not my comparative advantage. The reader should consult
Koop (2003) for a more recent treatment of the subject. Nonparametrics and semiparametrics
are popular methods in today’s econometrics, yet they are not covered in this book to keep
the technical difficulty at a low level. These are a must for a follow-up course in econometrics,
see Li and Racine (2007). Also, for a more rigorous treatment of asymptotic theory, see White
(1984). Despite these limitations, the topics covered in this book are basic and necessary in the
training of every economist. In fact, it is but a ‘stepping stone’, a ‘sample of the good stuff’ the
reader will find in this young, energetic and ever evolving field.

I hope you will share my enthusiasm and optimism in the importance of the tools you will
learn when you are through reading this book. Hopefully, it will encourage you to consult the
suggested readings on this subject that are referenced at the end of each chapter. In his inaugural
lecture at the University of Birmingham, entitled “Econometrics: A View from the Toolroom,”
Peter C.B. Phillips (1977) concluded:

“the toolroom may lack the glamour of economics as a practical art in government
or business, but it is every bit as important. For the tools (econometricians) fashion
provide the key to improvements in our quantitative information concerning matters
of economic policy.”



VIII Preface

As a student of econometrics, I have benefited from reading Johnston (1984), Kmenta (1986),
Theil (1971), Klein (1974), Maddala (1977), and Judge, et al. (1985), to mention a few. As a
teacher of undergraduate econometrics, I have learned from Kelejian and Oates (1989), Wallace
and Silver (1988), Maddala (1992), Kennedy (1992), Wooldridge (2003) and Stock and Watson
(2003). As a teacher of graduate econometrics courses, Greene (1993), Judge, et al. (1985),
Fomby, Hill and Johnson (1984) and Davidson and MacKinnon (1993) have been my regular
companions. The influence of these books will be evident in the pages that follow. At the end
of each chapter I direct the reader to some of the classic references as well as further suggested
readings.

This book strikes a balance between a rigorous approach that proves theorems and a com-
pletely empirical approach where no theorems are proved. Some of the strengths of this book
lie in presenting some difficult material in a simple, yet rigorous manner. For example, Chapter
12 on pooling time-series of cross-section data is drawn from the author’s area of expertise
in econometrics and the intent here is to make this material more accessible to the general
readership of econometrics.

The exercises contain theoretical problems that should supplement the understanding of the
material in each chapter. Some of these exercises are drawn from the Problems and Solutions
series of Econometric Theory (reprinted with permission of Cambridge University Press). In
addition, the book has a set of empirical illustrations demonstrating some of the basic results
learned in each chapter. Data sets from published articles are provided for the empirical exer-
cises. These exercises are solved using several econometric software packages and are available
in the Solution Manual. This book is by no means an applied econometrics text, and the reader
should consult Berndt’s (1991) textbook for an excellent treatment of this subject. Instructors
and students are encouraged to get other data sets from the internet or journals that provide
backup data sets to published articles. The Journal of Applied Econometrics and the Jour-
nal of Business and Economic Statistics are two such journals. In fact, the Journal of Applied
Econometrics has a replication section for which I am serving as an editor. In my econometrics
course, I require my students to replicate an empirical paper. Many students find this experience
rewarding in terms of giving them hands on application of econometric methods that prepare
them for doing their own empirical work.

I would like to thank my teachers Lawrence R. Klein, Roberto S. Mariano and Robert Shiller
who introduced me to this field; James M. Griffin who provided some data sets, empirical
exercises and helpful comments, and many colleagues who had direct and indirect influence
on the contents of this book including G.S. Maddala, Jan Kmenta, Peter Schmidt, Cheng
Hsiao, Tom Wansbeek, Walter Kramer, Maxwell King, Peter C.B. Phillips, Alberto Holly, Essie
Maasoumi, Aris Spanos, Farshid Vahid, Heather Anderson, Arnold Zellner and Bryan Brown.
Also, I would like to thank my students Wei-Wen Xiong, Ming-Jang Weng, Kiseok Nam, Dong
Li and Gustavo Sanchez who read parts of this book and solved several of the exercises. Werner
Miiller and Martina Bihn at Springer for their prompt and professional editorial help. I have
also benefited from my visits to the University of Arizona, University of California San-Diego,
Monash University, the University of Zurich, the Institute of Advanced Studies in Vienna, and
the University of Dortmund, Germany. A special thanks to my wife Phyllis whose help and
support were essential to completing this book.
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CHAPTER 1
What Is Econometrics?

1.1 Introduction

What is econometrics? A few definitions are given below:

The method of econometric research aims, essentially, at a conjunction of economic
theory and actual measurements, using the theory and technique of statistical infer-
ence as a bridge pier.

Trygve Haavelmo (1944)

Econometrics may be defined as the quantitative analysis of actual economic phe-
nomena based on the concurrent development of theory and observation, related by
appropriate methods of inference.

Samuelson, Koopmans and Stone (1954)

Econometrics is concerned with the systematic study of economic phenomena using
observed data.
Aris Spanos (1986)

Broadly speaking, econometrics atms to give empirical content to economic relations
for testing economic theories, forecasting, decision making, and for ex post deci-
ston/policy evaluation.

J. Geweke, J. Horowitz, and M.H. Pesaran (2007)

For other definitions of econometrics, see Tintner (1953).

An econometrician has to be a competent mathematician and statistician who is an economist
by training. Fundamental knowledge of mathematics, statistics and economic theory are a nec-
essary prerequisite for this field. As Ragnar Frisch (1933) explains in the first issue of Econo-
metrica, it is the unification of statistics, economic theory and mathematics that constitutes
econometrics. Each view point, by itself is necessary but not sufficient for a real understanding
of quantitative relations in modern economic life.

Ragnar Frisch is credited with coining the term ‘econometrics’ and he is one of the founders
of the Econometrics Society, see Christ (1983). Econometrics aims at giving empirical content
to economic relationships. The three key ingredients are economic theory, economic data, and
statistical methods. Neither ‘theory without measurement’, nor ‘measurement without theory’
are sufficient for explaining economic phenomena. It is as Frisch emphasized their union that is
the key for success in the future development of econometrics.

Lawrence R. Klein, the 1980 recipient of the Nobel Prize in economics “for the creation of
econometric models and their application to the analysis of economic fluctuations and economic
policies,”! has always emphasized the integration of economic theory, statistical methods and
practical economics. The exciting thing about econometrics is its concern for verifying or refuting
economic laws, such as purchasing power parity, the life cycle hypothesis, the quantity theory of
money, etc. These economic laws or hypotheses are testable with economic data. In fact, David
F. Hendry (1980) emphasized this function of econometrics:
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The three golden rules of econometrics are test, test and test; that all three rules are
broken regularly in empirical applications is fortunately easily remedied. Rigorously
tested models, which adequately described the available data, encompassed previous
findings and were derived from well based theories would enhance any claim to be
scientific.

Econometrics also provides quantitative estimates of price and income elasticities of demand,
estimates of returns to scale in production, technical efficiency, the velocity of money, etc. It
also provides predictions about future interest rates, unemployment, or GNP growth. Lawrence
Klein (1971) emphasized this last function of econometrics:

Econometrics had its origin in the recognition of empirical reqularities and the sys-
tematic attempt to generalize these regularities into “laws” of economics. In a broad
sense, the use of such “laws” is to make predictions - - about what might have or
what will come to pass. Econometrics should give a base for economic prediction be-
yond experience if it is to be useful. In this broad sense it may be called the science
of economic prediction.

Econometrics, while based on scientific principles, still retains a certain element of art. According
to Malinvaud (1966), the art in econometrics is trying to find the right set of assumptions
which are sufficiently specific, yet realistic to enable us to take the best possible advantage of
the available data. Data in economics are not generated under ideal experimental conditions
as in a physics laboratory. This data cannot be replicated and is most likely measured with
error. In some cases, the available data are proxies for variables that are either not observed or
cannot be measured. Many published empirical studies find that economic data may not have
enough variation to discriminate between two competing economic theories. Manski (1995, p.
8) argues that

Social scientists and policymakers alike seem driven to draw sharp conclusions, even
when these can be generated only by imposing much stronger assumptions than can
be defended. We need to develop a greater tolerance for ambiguity. We must face up
to the fact that we cannot answer all of the questions that we ask.

To some, the “art” element in econometrics has left a number of distinguished economists doubt-
ful of the power of econometrics to yield sharp predictions. In his presidential address to the
American Economic Association, Wassily Leontief (1971, pp. 2-3) characterized econometrics
work as:

an attempt to compensate for the glaring weakness of the data base available to us
by the widest possible use of more and more sophisticated techniques. Alongside the
mounting pile of elaborate theoretical models we see a fast growing stock of equally
intricate statistical tools. These are intended to stretch to the limit the meager supply
of facts.

Most of the time the data collected are not ideal for the economic question at hand because
they were posed to answer legal requirements or comply to regulatory agencies. Griliches (1986,
p.1466) describes the situation as follows:
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Econometricians have an ambivilant attitude towards economic data. At one level,
the ‘data’ are the world that we want to explain, the basic facts that economists
purport to elucidate. At the other level, they are the source of all our trouble. Their
imperfections make our job difficult and often impossible... We tend to forget that
these imperfections are what gives us our legitimacy in the first place... Given that
it is the ‘badness’ of the data that provides us with our living, perhaps it is not all
that surprising that we have shown little interest in improving it, in getting involved
in the grubby task of designing and collecting original data sets of our own. Most of
our work is on ‘found’ data, data that have been collected by somebody else, often
for quite different purposes.

Even though economists are increasingly getting involved in collecting their data and measuring
variables more accurately and despite the increase in data sets and data storage and computa-
tional accuracy, some of the warnings given by Griliches (1986, p. 1468) are still valid today:

The encounters between econometricians and data are frustrating and ultimately
unsatisfactory both because econometricians want too much from the data and hence
tend to be dissappointed by the answers, and because the data are incomplete and
imperfect. In part it is our fault, the appetite grows with eating. As we get larger
samples, we keep adding variables and expanding our models, until on the margin,
we come back to the same insignificance levels.

1.2 A Brief History

For a brief review of the origins of econometrics before World War II and its development in the
1940-1970 period, see Klein (1971). Klein gives an interesting account of the pioneering works
of Moore (1914) on economic cycles, Working (1927) on demand curves, Cobb and Douglas
(1928) on the theory of production, Schultz (1938) on the theory and measurement of demand,
and Tinbergen (1939) on business cycles. As Klein (1971, p. 415) adds:

The works of these men mark the beginnings of formal econometrics. Their analysis
was systematic, based on the joint foundations of statistical and economic theory,
and they were aiming at meaningful substantive goals - to measure demand elasticity,
marginal productivity and the degree of macroeconomic stability.

The story of the early progress in estimating economic relationships in the U.S. is given in Christ
(1985). The modern era of econometrics, as we know it today, started in the 1940’s. Klein (1971)
attributes the formulation of the econometrics problem in terms of the theory of statistical
inference to Haavelmo (1943, 1944) and Mann and Wald (1943). This work was extended later by
T.C. Koopmans, J. Marschak, L. Hurwicz, T.W. Anderson and others at the Cowles Commission
in the late 1940’s and early 1950’s, see Koopmans (1950). Klein (1971, p. 416) adds:

At this time econometrics and mathematical economics had to fight for academic
recognition. In retrospect, it is evident that they were growing disciplines and becom-
ing increasingly attractive to the new generation of economic students after World
War 11, but only a few of the largest and most advanced universities offered formal
work in these subjects. The mathematization of economics was strongly resisted.
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This resistance is a thing of the past, with econometrics being an integral part of economics,
taught and practiced worldwide. Econometrica, the official journal of the Econometric Society
is one of the leading journals in economics, and today the Econometric Society boast a large
membership worldwide. Today, it is hard to read any professional article in leading economics
and econometrics journals without seeing mathematical equations. Students of economics and
econometrics have to be proficient in mathematics to comprehend this research. In an Econo-
metric Theory interview, professor J. D. Sargan of the London School of Economics looks back
at his own career in econometrics and makes the following observations: “... econometric theo-
rists have really got to be much more professional statistical theorists than they had to be when
I started out in econometrics in 1948... Of course this means that the starting econometrician
hoping to do a Ph.D. in this field is also finding it more difficult to digest the literature as a
prerequisite for his own study, and perhaps we need to attract students of an increasing de-
gree of mathematical and statistical sophistication into our field as time goes by,” see Phillips
(1985, pp. 134-135). This is also echoed by another giant in the field, professor T.W. Anderson
of Stanford, who said in an Econometric Theory interview: “These days econometricians are
very highly trained in mathematics and statistics; much more so than statisticians are trained
in economics; and I think that there will be more cross-fertilization, more joint activity,” see
Phillips (1986, p. 280).

Research at the Cowles Commission was responsible for providing formal solutions to the
problems of identification and estimation of the simultaneous equations model, see Christ
(1985).2 Two important monographs summarizing much of the work of the Cowles Commis-
sion at Chicago, are Koopmans and Marschak (1950) and Koopmans and Hood (1953).3 The
creation of large data banks of economic statistics, advances in computing, and the general
acceptance of Keynesian theory, were responsible for a great flurry of activity in econometrics.
Macroeconometric modelling started to flourish beyond the pioneering macro models of Klein
(1950) and Klein and Goldberger (1955).

For the story of the founding of Econometrica and the Econometric Society, see Christ (1983).
Suggested readings on the history of econometrics are Pesaran (1987), Epstein (1987) and
Morgan (1990). In the conclusion of her book on The History of Econometric Ideas, Morgan
(1990; p. 264) explains:

In the first half of the twentieth century, econometricians found themselves carrying
out a wide range of tasks: from the precise mathematical formulation of economic
theories to the development tasks needed to build an econometric model; from the ap-
plication of statistical methods in data preperation to the measurement and testing
of models. Of necessity, econometricians were deeply involved in the creative devel-
opment of both mathematical economic theory and statistical theory and techniques.
Between the 1920s and the 1940s, the tools of mathematics and statistics were in-
deed used in a productive and complementary union to forge the essential ideas of the
econometric approach. But the changing nature of the econometric enterprise in the
1940s caused a return to the division of labour favoured in the late nineteenth cen-
tury, with mathematical economists working on theory building and econometricians
concerned with statistical work. By the 1950s the founding ideal of econometrics, the
union of mathematical and statistical economics into a truly synthetic economics,
had collapsed.
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In modern day usage, econometrics have become the application of statistical methods to eco-
nomics, like biometrics and psychometrics. Although, the ideals of Frisch still live on in Econo-
metrica and the Econometric Society, Maddala (1999) argues that: “In recent years the issues
of Econometrica have had only a couple of papers in econometrics (statistical methods in eco-
nomics) and the rest are all on game theory and mathematical economics. If you look at the list
of fellows of the Econometric Society, you find one or two econometricians and the rest are game
theorists and mathematical economists.” This may be a little exagerated but it does summarize
the rift between modern day econometrics and mathematical economics. For a recent world
wide ranking of econometricians as well as academic institutions in the field of econometrics,
see Baltagi (2007).

1.3 Critiques of Econometrics

Econometrics has its critics. Interestingly, John Maynard Keynes (1940, p. 156) had the following
to say about Jan Tinbergen’s (1939) pioneering work:

No one could be more frank, more painstaking, more free of subjective bias or parti
pris than Professor Tinbergen. There is no one, therefore, so far as human qualities
go, whom it would be safer to trust with black magic. That there is anyone I would
trust with it at the present stage or that this brand of statistical alchemy is ripe to
become a branch of science, I am not yet persuaded. But Newton, Boyle and Locke
all played with alchemy. So let him continue.*

In 1969, Jan Tinbergen shared the first Nobel Prize in economics with Ragnar Frisch.
Recent well cited critiques of econometrics include the Lucas (1976) critique which is based
on the Rational Expectations Hypothesis (REH). As Pesaran (1990, p. 17) puts it:

The message of the REH for econometrics was clear. By postulating that economic
agents form their expectations endogenously on the basis of the true model of the
economy and a correct understanding of the processes generating exogenous variables
of the model, including government policy, the REH raised serious doubts about the
invariance of the structural parameters of the mainstream macroeconometric models
in face of changes in government policy.

Responses to this critique include Pesaran (1987). Other lively debates among econometricians
include Ed Leamer’s (1983) article entitled “Let’s Take the Con Out of Econometrics,” and the
response by McAleer, Pagan and Volker (1985). Rather than leave the reader with criticisms
of econometrics especially before we embark on the journey to learn the tools of the trade, we
conclude this section with the following quote from Pesaran (1990, pp. 25-26):

There is no doubt that econometrics is subject to important limitations, which stem
largely from the incompleteness of the economic theory and the non-experimental
nature of economic data. But these limitations should not distract us from recog-
nizing the fundamental role that econometrics has come to play in the development
of economics as a scientific discipline. It may not be possible conclusively to re-
ject economic theories by means of econometric methods, but it does not mean that
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nothing useful can be learned from attempts at testing particular formulations of a
given theory against (possible) rival alternatives. Similarly, the fact that economet-
ric modelling is inevitably subject to the problem of specification searches does mot
mean that the whole activity is pointless. Econometric models are important tools for
forecasting and policy analysis, and it is unlikely that they will be discarded in the
future. The challenge is to recognize their limitations and to work towards turning
them into more reliable and effective tools. There seem to be no viable alternatives.

1.4 Looking Ahead

Econometrics have experienced phenomenal growth in the past 50 years. There are five volumes
of the Handbook of Econometrics running to 3833 pages. Most of it dealing with post 1960’s
research. A lot of the recent growth reflects the rapid advances in computing technology. The
broad availability of micro data bases is a major advance which facilitated the growth of panel
data methods (see Chapter 12) and microeconometric methods especially on sample selection
and discrete choice (see Chapter 13) and that also lead to the award of the Nobel Prize in
Economics to James Heckman and Daniel McFadden in 2000. The explosion in research in time
series econometrics which lead to the development of ARCH and GARCH and cointegration (see
Chapter 14) which also lead to the award of the Nobel Prize in Economics to Clive Granger and
Robert Engle in 2003. It is a different world than it was 30 years ago. The computing facilities
changed dramatically. The increasing accessibility of cheap and powerful computing facilities are
helping to make the latest econometric methods more readily available to applied researchers.
Today, there is hardly a field in economics which has not been intensive in its use of econometrics
in empirical work. Pagan (1987, p. 81) observed that the work of econometric theorists over the
period 1966-1986 have become part of the process of economic investigation and the training of
economists. Based on this criterion, he declares econometrics as an “outstanding success.” He
adds that:

The judging of achievement inevitably involves contrast and comparison. Over a
period of twenty years this would be best done by interviewing a time-travelling
economist displaced from 1966 to 1986. I came into econometrics just after the be-
ginning of this period, so have some appreciation for what has occurred. But because
I have seen the events gradually unfolding, the effects upon me are not as dramatic.
Nevertheless, let me try to be a time-traveller and comment on the perceptions of a
1966°er landing in 1986. My first impression must be of the large number of people
who have enough econometric and computer skills to formulate, estimate and sim-
ulate highly complexr and non-linear models. Someone who could do the equivalent
tasks in 1966 was well on the way to a Chair. My next impression would be of the
widespread use and purchase of econometric services in the academic, government,
and private sectors. Quantification is now the norm rather than the exception. A
third impression, gleaned from a sounding of the job market, would be a persistent
tendency towards an excess demand for well-trained econometricians. The economist
in me would have to acknowledge that the market judges the products of the discipline
as a success.
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The challenge for the 215 century is to narrow the gap between theory and practice. Many
feel that this gap has been widening with theoretical research growing more and more abstract
and highly mathematical without an application in sight or a motivation for practical use.
Heckman (2001) argues that econometrics is useful only if it helps economists conduct and
interpret empirical research on economic data. He warns that the gap between econometric
theory and empirical practice has grown over the past two decades. Theoretical econometrics
becoming more closely tied to mathematical statistics. Although he finds nothing wrong, and
much potential value, in using methods and ideas from other fields to improve empirical work
in economics, he does warn of the risks involved in uncritically adopting the methods and mind
set of the statisticians:

Econometric methods uncritically adapted from statistics are not useful in many re-
search activities pursued by economists. A theorem-proof format is poorly suited for
analyzing economic data, which requires skills of synthesis, interpretation and em-
pirical investigation. Command of statistical methods is only a part, and sometimes
a very small part, of what is required to do first class empirical research.

In an Econometric Theory interview with Jan Tinbergen, Magnus and Morgan (1987, p.117)
describe Tinbergen as one of the founding fathers of econometrics, publishing in the field from
1927 until the early 1950s. They add: “Tinbergen’s approach to economics has always been a
practical one. This was highly appropriate for the new field of econometrics, and enabled him
to make important contributions to conceptual and theoretical issues, but always in the context
of a relevant economic problem.” The founding fathers of econometrics have always had the
practitioner in sight. This is a far cry from many theoretical econometricians who refrain from
applied work.

The recent entry by Geweke, Horowitz, and Pesaran (2007) in the The New Palgrave Dictio-
nary provides the following recommendations for the future:

Econometric theory and practice seek to provide information required for informed
decision-making in public and private economic policy. This process is limited not
only by the adequacy of econometrics, but also by the development of economic theory
and the adequacy of data and other information. Effective progress, in the future as
in the past, will come from simultaneous improvements in econometrics, economic
theory, and data. Research that specifically addresses the effectiveness of the interface
between any two of these three in improving policy — to say nothing of all of them
— necessarily transcends traditional subdisciplinary boundaries within economics.
But it is precisely these combinations that hold the greatest promise for the social
contribution of academic economics.

Notes

1. See the interview of Professor L.R. Klein by Mariano (1987). Econometric Theory publishes inter-
views with some of the giants in the field. These interviews offer a wonderful glimpse at the life
and work of these giants.

2. Simultaneous equations model is an integral part of econometrics and is studied in Chapter 11.



10 CHAPTER 1: What Is Econometrics?

3. Tjalling Koopmans was the joint recipient of the Nobel Prize in Economics in 1975. In addition
to his work on the identification and estimation of simultaneous equations models, he received the
Nobel Prize for his work in optimization and economic theory.

4. Tencountered this attack by Keynes on Tinbergen in the inaugural lecture that Peter C.B. Phillips
(1977) gave at the University of Birmingham entitled “Econometrics: A View From the Toolroom,”
and David F. Hendry’s (1980) article entitled “Econometrics - Alchemy or Science?”
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CHAPTER 2
Basic Statistical Concepts

2.1 Introduction

One chapter cannot possibly review what one learned in one or two pre-requisite courses in
statistics. This is an econometrics book, and it is imperative that the student have taken at
least one solid course in statistics. The concepts of a random variable, whether discrete or contin-
uous, and the associated probability function or probability density function (p.d.f.) are assumed
known. Similarly, the reader should know the following statistical terms: Cumulative distribu-
tion function, marginal, conditional and joint p.d.f.’s. The reader should be comfortable with
computing mathematical expectations, and familiar with the concepts of independence, Bayes
Theorem and several continuous and discrete probability distributions. These distributions in-
clude: the Bernoulli, Binomial, Poisson, Geometric, Uniform, Normal, Gamma, Chi-squared
(x?), Exponential, Beta, t and F distributions.

Section 2.2 reviews two methods of estimation, while section 2.3 reviews the properties of
the resulting estimators. Section 2.4 gives a brief review of test of hypotheses, while section 2.5
discusses the meaning of confidence intervals. These sections are fundamental background for
this book, and the reader should make sure that he or she is familiar with these concepts. Also,
be sure to solve the exercises at the end of this chapter.

2.2 Methods of Estimation

Consider a Normal distribution with mean y and variance ¢, This is the important “Gaussian”
distribution which is symmetric and bell-shaped and completely determined by its measure
of centrality, its mean p and its measure of dispersion, its variance o2. 1 and o2 are called
the population parameters. Draw a random sample Xi,...,X,, independent and identically
distributed (IID) from this population. We usually estimate x by 7i = X and o2 by

= Y0 (X~ X)?/(n - 1),

For example, ;© = mean income of a household in Houston. X = sample average of incomes of
100 households randomly interviewed in Houston.

This estimator of u could have been obtained by either of the following two methods of
estimation:

(i) Method of Moments

Simply stated, this method of estimation uses the following rule: Keep equating population
moments to their sample counterpart until you have estimated all the population parameters.



14 CHAPTER 2: Basic Statistical Concepts

Population Sample
E(X)=p S Xi/n=X
BE(X?) =p®+0° Y X n
E(X7) 2z Xi/n

The normal density is completely identified by 1 and o2, hence only the first 2 equations are
needed

=X and 4+t =" X2 /n
Substituting the first equation in the second one obtains

0% =31y XP/n— X2 = YL (X - X)?/n

(ii) Maximum Likelihood Estimation (MLE)

For a random sample of size n from the Normal distribution X; ~ N(u,0?), we have
fi(Xip,0%) = (1/oV2r) exp {—(X; — p)?/20?} — oo < X; < 400

Since X1, ..., X,, are independent and identically distributed, the joint probability density func-
tion is given as the product of the marginal probability density functions:

f(Xn, . X p,07) = lfll fi(Xis,0%) = (/270%™ exp { = 0L, (X — 1)?/20°} (2.1)

Usually, we observe only one sample of n households which could have been generated by any
pair of (i1,02) with —0o < p < 400 and 02 > 0. For each pair, say (ug,03), f(X1, ..., Xn; lo, 02)
denotes the probability (or likelihood) of obtaining that sample. By varying (u, 02) we get differ-
ent probabilities of obtaining this sample. Intuitively, we choose the values of i and o2 that max-
imize the probability of obtaining this sample. Mathematically, we treat f(X1,..., Xn;p,0?) as
L(p,0?) and we call it the likelihood function. Maximizing L(u,o?) with respect to u and o2,
one gets the first-order conditions of maximization:

(OL/0p) =0 and (OL/d5%) =0

Equivalently, we can maximize logL(u,o?) rather than L(u,o?) and still get the same answer.
Usually, the latter monotonic transformation of the likelihood is easier to maximize and the
first-order conditions become

(OlogL/0u) =0 and (dlogL/dc?) =0
For the Normal distribution example, we get
logLL(p: %) = —(n/2)log 0 — (n/2)log 27 — (1/20%) Y1 (X; — )2
ANogL(p;0°) /O = (1/0*) o1y (Xi —p) = 0= fipypp = X
DlogL(u; 02)/00? = —(n/2)(1/0%) + Y0, (Xi — p)?/20% = 0

= 8?\/[LE = Z:‘L:1(Xi - ﬂMLE)Q/n = Z?=1(Xi - X)Q/”
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Note that the moments estimators and the maximum likelihood estimators are the same for
the Normal distribution example. In general, the two methods need not necessarily give the
same estimators. Also, note that the moments estimators will always have the same estimating
equations, for example, the first two equations are always

EX)=p=>",X;/n=X and  BE(X?) =p*+o*=X", X2 /n.

For a specific distribution, we need only substitute the relationship between the population
moments and the parameters of that distribution. Again, the number of equations needed
depends upon the number of parameters of the underlying distribution. For e.g., the exponential
distribution has one parameter and needs only one equation whereas the gamma distribution has
two parameters and needs two equations. Finally, note that the maximum likelihood technique
is heavily reliant on the form of the underlying distribution, but it has desirable properties when
it exists. These properties will be discussed in the next section.

So far we have dealt with the Normal distribution to illustrate the two methods of estima-
tion. We now apply these methods to the Bernoulli distribution and leave other distributions
applications to the exercises. We urge the student to practice on these exercises.

Bernoulli Example: In various cases in real life the outcome of an event is binary, a worker may
join the labor force or may not. A criminal may return to crime after parole or may not. A
television off the assembly line may be defective or not. A coin tossed comes up head or tail,
and so on. In this case § = Pr[Head] and 1 — 6 = Pr[Tail] with 0 < § < 1 and this can be
represented by the discrete probability function

f(X;0) =0X(1-0)"% X=0,1
=0 elsewhere

The Normal distribution is a continuous distribution since it takes values for all X over the real
line. The Bernoulli distribution is discrete, because it is defined only at integer values for X.
Note that P[X = 1] = f(1;0) = 0 and P[X = 0] = f(0;0) = 1 — 0 for all values of 0 < 6 < 1.
A random sample of size n drawn from this distribution will have a joint probability function

n

LO) = F(X1,..., X 0) = 021 Xi(1 — )2 X

with X; = 0,1 for i = 1,...,n. Therefore,

logL(0) = (>, Xi)logh + (n— > 1| X;)log(1 — 6)
OlogL(6) _ XL, X _ (n =31 Xi)

90 0 1-9)

Solving this first-order condition for 6, one gets

i X)(1=0) —0(n -3, Xi) =0

which reduces to

/G\MLE = Z?:l Xi/n =X.

This is the frequency of heads in n tosses of a coin.
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For the method of moments, we need
E(X) =% o Xf(X,0) =1.£(1,0) +0.£(0,0) = f(1,0) = 0

and this is equated to X to get 9 = X. Once again, the MLE and the method of moments yield
the same estimator. Note that only one parameter 6 characterizes this Bernoulli distribution
and one does not need to equate second or higher population moments to their sample values.

2.3 Properties of Estimators

(i) Unbiasedness

11 is said to be unbiased for p if and only if E(z) = p

For fi = X, we have E(X) = Y. | E(X;)/n = p and X is unbiased for u. No distributional
assumption is needed as long as the X;’s are distributed with the same mean u. Unbiasedness
means that “on the average” our estimator is on target. Let us explain this last statement. If
we repeat our drawing of a random sample of 100 households, say 200 times, then we get 200
X’s. Some of these X ’s will be above p some below p, but their average should be very close
to w. Since in real life situations, we observe only one random sample, there is little consolation
if our observed X is far from p. But the larger n is the smaller is the dispersion of this X, since
var(X) = 02 /n and the lesser is the likelihood of this X to be very far from p. This leads us to
the concept of efficiency.

(ii) Efficiency

For two unbiased estimators, we compare their efficiencies by the ratio of their variances. We say
that the one with lower variance is more efficient. For example, taking fi; = X; versus fiy = X,
both estimators are unbiased but var(fi;) = o2 whereas, var(fi;) = 0?/n and {the relative
efficiency of 7i; with respect to fis} = var(iiy)/var(fi;) = 1/n, see Figure 2.1. To compare all
unbiased estimators, we find the one with minimum variance. Such an estimator if it exists is
called the MVU (minimum variance unbiased estimator). A lower bound for the variance of
any unbiased estimator 1 of u, is known in the statistical literature as the Cramér-Rao lower
bound, and is given by

var(ii) > 1/n{E(log f(X; ) /0u}* = =1/{nE(0log f(X; n))/0p°} (2:2)

where we use either representation of the bound on the right hand side of (2.2) depending on
which one is the simplest to derive.

Example 1: Consider the normal density
logf (Xi; 1) = (—1/2)logo? — (1/2)log2m — (1/2)(X; — p)?/0”
Aog f(Xi; ) /O = (X; — p)/o

Plogf (X p)/Op? = —(1/0?)
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J)

Figure 2.1 Efficiency Comparisons

with E{0%logf(X;; 1)/0pu?} = —(1/0?). Therefore, the variance of any unbiased estimator of ,
say 7 satisfies the property that var(i1) > o2 /n.
Turning to o2; let = o2, then

logf(X;:0) = —(1/2)logh — (1/2)log2r — (1/2)(X; — 1)/
Dogf(Xi;0)/00 = —1/20 + (X; — 1)?/20% = {(X; — )2 — 0}/26?

Ologf(X;30)/06% = 1/20% — (X; — 1)* /6% = {0 — 2(X; — p)*}/26°

[8210gf(X1, 0)/00% = —(1/26?), since E(X; — p)?> = 6. _Hence, for any unbiased estimator of
0, say 0, its variance satisfies the following property Var(9) > 292 /n, or var(c?) > 20 /n.

Note that, if one finds an unbiased estimator whose variance attains the Cramér-Rao lower
bound, then this is the MVU estimator. It is important to remember that this is only a lower
bound and sometimes it is not necessarily attained. If the X;’s are normal, X ~ N(u,o?%/n).
Hence, X is unbiased for y with variance ¢ /n equal to the Cramér-Rao lower bound. Therefore,
X is MVU for p. On the other hand,

a?\/ILE = Z?:1(Xi - X)Q/W

and it can be shown that (n63;; ;)/(n—1) = s? is unbiased for o2. In fact, (n—1)s?/0? ~ x2_,
and the expected value of a Chi-squared variable with (n — 1) degrees of freedom is exactly its
degrees of freedom. Using this fact,

B{(n—1)s*/0%} = E(G ) =n— L.

Therefore, E(s?) = 02.! Also, the variance of a Chi-squared variable with (n — 1) degrees of
freedom is twice these degrees of freedom. Using this fact,

var{(n —1)s*/o®} = var(x;,_y) = 2(n — 1)

2
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{(n —1)?/o*}var(s?) = 2(n — 1).

Hence, the var(s?) = 20%/(n—1) and this does not attain the Cramér-Rao lower bound. In fact,
it is larger than (20*/n). Note also that var(6a,;5) = {(n —1)?/n?}var(s?) = {2(n — 1)}o*/n.
This is smaller than (20*/n)! How can that be? Remember that 63,7 5 is a biased estimator
of 0 and hence, var(64,; ) should not be compared with the Cramér-Rao lower bound. This
lower bound pertains only to unbiased estimators.

Warning: Attaining the Cramér-Rao lower bound is only a sufficient condition for efficiency.
Failing to satisfy this condition does not necessarily imply that the estimator is not efficient.

Example 2: For the Bernoulli case

logf(Xi;0) = Xilogf + (1 — X;)log(1 — 0)
Ologf(X;,0)/00 = (X;/0) — (1 — X;)/(1 - 0)

D?logf(Xi;0)/060% = (—X;/0%) — (1 — X;)/(1 — )2

and E[@QIng(Xi;Hl/BGQ] = (-1/0) —1/(1 — 0) = —1/[6(1 — 9)]. Therefore, for any unbiased
estimator of 0, say 6, its variance satisfies the following property:
var(9) > 6(1 — 6) /n.

For the Bernoulli random sample, we proved that p = E(X;) = 6. Similarly, it can be easily
verified that o = var(X;) = 6(1—0). Hence, X has mean y = 6 and var(X) = 0% /n = 0(1—0) /n.
This means that X is unbiased for  and it attains the Cramér-Rao lower bound. Therefore, X
is MVU for 6.

Unbiasedness and efficiency are finite sample properties (in other words, true for any finite
sample size n). Once we let n tend to oo then we are in the realm of asymptotic properties.

Example 3: For a random sample from any distribution with mean p it is clear that g =
(X 4+ 1/n) is not an unbiased estimator of u since F(z) = E(X + 1/n) = p+ 1/n. However, as
n — oo the lim E () is equal to p. We say, that 1 is asymptotically unbiased for p.

Example 4: For the Normal case
i =(m—1s*/n and E@G3.5) = (n—1)0%/n.

But as n — oo, lim E(63;;5) = 02. Hence, 3,75 is asymptotically unbiased for o2,

Similarly, an estimator which attains the Cramér-Rao lower bound in the limit is asymp-
totically efficient. Note that var(X) = o2/n, and this tends to zero as n — oco. Hence, we
considery/nX which has finite variance since var(y/nX) = n var(X) = o%. We say that the
asymptotic variance of X denoted by asymp.var(X) = o2/n and that it attains the Cramér-

Rao lower bound in the limit. X is therefore asymptotically efficient. Similarly,

var(vnoipp) = n var(@ip) = 2(n — 1)t /n

which tends to 20* as n — co. This means that asymp.var(53,; z) = 20*/n and that it attains
the Cramér-Rao lower bound in the limit. Therefore, 53;; ;; is asymptotically efficient.
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(iii) Consistency

Another asymptotic property is consistency. This says that as n — oo lim Pr[|X — u| > ¢ =0
for any arbitrary positive constant ¢. In other words, X will not differ from pu as n — oo.
Proving this property uses the Chebyshev’s inequality which states in this context that

Pr(|X — p| > kog] < 1/k2.

If we let ¢ = ko then 1/k* = 0% /c¢? = 0 /nc® and this tends to 0 as n — oo, since o® and ¢
are finite positive constants. A sufficient condition for an estimator to be consistent is that it is
asymptotically unbiased and that its variance tends to zero as n — 00.2

Example 1: For a random sample from any distribution with mean p and variance o, E(X) =
and var(X) = 02?/n — 0 as n — oo, hence X is consistent for .

Example 2: For the Normal case, we have shown that E(s%) = 02 and var(s?) = 2(n—1)o*/n? —
0 as n — oo, hence s? is consistent for o2.

Example 3: For the Bernoulli case, we know that E(X) = 6 and var(X) = (1 — 0)/n — 0 as
n — 00, hence X is consistent for 4.

Warning: This is only a sufficient condition for consistency. Failing to satisfy this condition
does not necessarily imply that the estimator is inconsistent.

(iv) Sufficiency

X is sufficient for j, if X contains all the information in the sample pertaining to u. In other
words, f(X1,...,X,/X) is independent of u. To prove this fact one uses the factorization
theorem due to Fisher and Neyman. In this context, X is sufficient for u, if and only if one can
factorize the joint p.d.f.

where h and ¢ are any two functions with the latter being only a function of the X’s and
independent of p in form and in the domain of the X’s.

I%xample 1: For the Normal case, it is clear from equation (2.1) that by subtracting and adding
X in the summation we can write after some algebra

FX1, oy X 1, 02) = (1/2m02)/2e1(1/20%) 300, (XimX)?} o~ {(0/20) (X —10)?}

Hence, h(X;p) = e~ (n/20*)(X=1*) and 9(X1,...,X,) is the remainder term which is independent
of p in form. Also —oco < X; < oo and hence independent of x in the domain. Therefore, X is
sufficient for u.

Example 2: For the Bernoulli case,

FOX1, . X 0)=0"X(1—0)"-%) X, =0,1 fori=1,...,n.

Therefore, h(X,0) = H"X(l —0)"0=%) and g(Xy,...,X,) = 1 which is independent of ¢ in form
and domain. Hence, X is sufficient for 6.
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Under certain regularity conditions on the distributions we are sampling from, one can show
that the MVU of any parameter 6 is an unbiased function of a sufficient statistic for #.> Advan-
tages of the maximum likelihood estimators is that (i) they are sufficient estimators when they
exist. (ii) They are asymptotically efficient. (iii) If the distribution of the MLE satisfies certain
regularity conditions, then making the MLE unbiased results in a unique MVU estimator. A
prime example of this is s? which was shown to be an unbiased estimator of o2 for a random
sample drawn from the Normal distribution. It can be shown that s is sufficient for o2 and that
(n—1)s?/0? ~ x2_,. Hence, s is an unbiased sufficient statistic for o2 and therefore it is MVU
for 02, even though it does not attain the Cramér-Rao lower bound. (iv) Maximum likelihood
estimates are invariant with respect to continuous transformations. To explain the last property,
consider the estimator of e#. Given fiy;;z = X, an obvious estimator is e#mre = ¢X. This is in
fact the MLE of e#. In general, if g(11) is a continuous function of p, then g(fiysr ) is the MLE of
g(p). Note that E(efmrr) # ePamie) = et in other words, expectations are not invariant to all
continuous transformations, especially nonlinear ones and hence the resulting MLE estimator
may not be unbiased. eX is not unbiased for e# even though X is unbiased for p.

In summary, there are two routes for finding the MVU estimator. One is systematically
following the derivation of a sufficient statistic, proving that its distribution satisfies certain
regularity conditions, and then making it unbiased for the parameter in question. Of course,
MLE provides us with sufficient statistics, for example,

X1,y X ~TIN(p,0%) = Jipgp = X and 3%41:15:2?:1()(1’—)_()2/”

are both sufficient for y and o2, respectively. X is unbiased for y and X ~ N(u,02/n). The
Normal distribution satisfies the regularity conditions needed for X to be MVU for p. 3,7 5 is
biased for o2, but s> = ng,;z/(n — 1) is unbiased for o and (n — 1)s?/? ~ x2_, which also
satisfies the regularity conditions for s2 to be a MVU estimator for o2.

Alternatively, one finds the Cramér-Rao lower bound and checks whether the usual estimator
(obtained from say the method of moments or the maximum likelihood method) achieves this
lower bound. If it does, this estimator is efficient, and there is no need to search further. If it
does not, the former strategy leads us to the MVU estimator. In fact, in the previous example
X attains the Cramér-Rao lower bound, whereas s?> does not. However, both are MVU for u

and o? respectively.

(v) Comparing Biased and Unbiased Estimators

Suppose we are given two estimators 51 and 52 of 6 where the first is unbiased and has a large
variance and the second is biased but with a small variance. The question is which one of these
two estimators is preferable? 6; is unbiased whereas 65 is biased. This means that if we repeat
the sampling procedure many times then we expect 6; to be on the average correct, whereas
62 would be on the average different from 6. However, in real life, we observe only one sample.
With a large variance for 91, there is a great likelihood that the sample drawn could result in
a 91 far away from 6. However, with a small variance for 92, there is a better chance of getting
a 0y close to 6. If our loss function is L(6), 9) (8 — 6)2 then our risk is

RG.0) = BIL@.0) = BO 07 = MSE®)
= E[§ — E(6) + E®) — 6] = var(6) + (Bias(6))>.
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Minimizing the risk when the loss function is quadratic is equivalent to minimizing the Mean
Square Error (MSE). From its definition the MSE shows the trade-off between bias and variance.
MVU theory, sets the bias equal to zero and minimizes var(@). In other words, it minimizes the
above risk function but only over O’s that are unbiased. If we do not restrict ourselves to
unbiased estimators of #, minimizing MSE may result in a biased estimator such as 52 which
beats 51 because the gain from its smaller variance outweighs the loss from its small bias, see

Figure 2.2.

JiC)

f6) —>

Eb,)

Figure 2.2 Bias versus Variance

2.4 Hypothesis Testing

The best way to proceed is with an example.

Example 1: The Economics Departments instituted a new program to teach micro-principles.
We would like to test the null hypothesis that 80% of economics undergraduate students will
pass the micro-principles course versus the alternative hypothesis that only 50% will pass. We
draw a random sample of size 20 from the large undergraduate micro-principles class and as
a simple rule we accept the null if x, the number of passing students is larger or equal to 13,
otherwise the alternative hypothesis will be accepted. Note that the distribution we are drawing
from is Bernoulli with the probability of success 6, and we have chosen only two states of the
world Hg; 6p = 0.80 and Hy;60; = 0.5. This situation is known as testing a simple hypothesis
versus another simple hypothesis because the distribution is completely specified under the null
or alternative hypothesis. One would expect (E(x) = nfp) 16 students under Hy and (nf;) 10
students under H; to pass the micro-principles exams. It seems then logical to take x > 13 as
the cut-off point distinguishing Hy form H;. No theoretical justification is given at this stage
to this arbitrary choice except to say that it is the mid-point of [10, 16]. Figure 2.3 shows that
one can make two types of errors. The first is rejecting Hy when in fact it is true, this is known
as type I error and the probability of committing this error is denoted by «. The second is
accepting Hy when it is false. This is known as type II error and the corresponding probability
is denoted by (3. For this example
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a = Prlrejecting Hy/Hp is true] = Pr[z < 13/6 = 0.8]
= bn=20;2=0;0=0.8)+..+b(n=20;z=12;6 =0.8)
= b(n=20;2=20;0=02)+.. +bn=20z=280=02)
= 0+..+0+0.0001 4 0.0005 + 0.0020 + 0.0074 + 0.0222 = 0.0322

where we have used the fact that b(n;z;60) = b(n;n — x;1 — ) and b(n;x;0) = ()" (1 — )" "
denotes the binomial distribution for z = 0,1, ...,n, see problem 4.

True World

0o = 0.80 6, =0.50

Decision | 6y | No error Type II error

01 | Type I error | No Error

Figure 2.3 Type I and II Error

6 = Prlaccepting Hy/Hy is false] = Pr[z > 13/6 = 0.5]
= bn=20;z=13;0 =0.5) + .. + b(n = 20;z = 20;0 = 0.5)
= 0.0739 + 0.0370 4 0.0148 + 0.0046 + 0.0011 4 0.0002 + 0 + 0 = 0.1316

The rejection region for Hy, z < 13, is known as the critical region of the test and o« = Pr[Falling
in the critical region/Hj is true] is also known as the size of the critical region. A good test
is one which minimizes both types of errors o and (. For the above example, « is low but §
is high with more than a 13% chance of happening. This 3 can be reduced by changing the
critical region from x < 13 to z < 14, so that Hy is accepted only if x > 14. In this case, one
can easily verify that

a = Prir<14/6 =0.8] =b(n=20; x =0;0 =0.8) +.. + b(n =20,z = 13,0 = 0.8)
= 0.0322 + b(n = 20;z = 13; = 0.8) = 0.0322 + 0.0545 = 0.0867

and

B = Prlx>14/0 =0.5] = b(n =20; z = 14;0 = 0.5) + .. + b(n = 20; z = 20;6 = 0.5)
= 0.1316 — b(n = 20;x = 13; § = 0.5) = 0.0577

By becoming more conservative on accepting Hy and more liberal on accepting H;, one reduces
0 from 0.1316 to 0.0577 but the price paid is the increase in « from 0.0322 to 0.0867. The only
way to reduce both « and 3 is by increasing n. For a fixed n, there is a tradeoff between « and
[ as we change the critical region. To understand this clearly, consider the real life situation of
trial by jury for which the defendant can be innocent or guilty. The decision of incarceration
or release implies two types of errors. One can make a = Pr[incarcerating/innocence] = 0 and
B = its maximum, by releasing every defendant. Or one can make 3 = Pr[release/guilty] = 0
and a = its maximum, by incarcerating every defendant. These are extreme cases but hopefully
they demonstrate the trade-off between « and (.
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The Neyman-Pearson Theory

The classical theory of hypothesis testing, known as the Neyman-Pearson theory, fixes a =
Pr(type I error) < a constant and minimizes § or maximizes (1 — (). The latter is known as
the Power of the test under the alternative.

The Neyman-Pearson Lemma: If C' is a critical region of size a and k is a constant such that
(Lo/L1) < k inside C

and
(Lo/Ly) > k outside C

then C' is a most powerful critical region of size « for testing Hy; 6 = 6y, against Hy;60 = 6.
Note that the likelihood has to be completely specified under the null and alternative. Hence,
this lemma applies only to testing a simple versus another simple hypothesis. The proof of this
lemma is given in Freund (1992). Intuitively, Lg is the likelihood function under the null H
and Ly is the corresponding likelihood function under Hy. Therefore, (Lg/L1) should be small
for points inside the critical region C' and large for points outside the critical region C. The
proof of the theorem shows that any other critical region, say D, of size o cannot have a smaller
probability of type II error than C. Therefore, C' is the best or most powerful critical region of
size «. Its power (1 — () is maximum at H;. Let us demonstrate this lemma with an example.

Example 2: Given a random sample of size n from N(u,0? = 4), use the Neyman-Pearson
lemma to find the most powerful critical region of size o = 0.05 for testing Hp; 1y = 2 against
the alternative Hy;py = 4.

Note that this is a simple versus simple hypothesis as required by the lemma, since 0 = 4
is known and p is specified by Hy and H;. The likelihood function for the N(u,4) density is
given by

L(p) = f(@1,- - an; 1 4) = (1/2V2m)"exp { = Y0 (w; — p)?/8}
so that
Lo = L{g) = (1/2V2)"exp { ~ S0 (@, — 2)/8}
and
Ly = L(uy) = (1/2v2m)"exp {~ 1Ly (2 — 4)°/8}
Therefore
Lo/Ly =exp{— X0 (x;i —2)® = 30 (2 — 4)%] /8} = exp {— 0" /2 + 3n/2}
and the critical region is defined by
exp{—> i, 2i/2+3n/2} <k inside C
Taking logarithms of both sides, subtracting (3/2)n and dividing by (—1/2)n one gets

z > K inside C
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In practice, one need not keep track of K as long as one keeps track of the direction of the
inequality. K can be determined by making the size of C' = o = 0.05. In this case

a=Prjz>K/p=2=Prlz 2 (K -2)/(2/vn)]
where z = (T — 2)/(2/y/n) is distributed N(0,1) under Hy. From the N(0,1) tables, we have

K -2
m:lﬁéﬁ)

Hence,
K =2+ 1.645(2/v/n)
and T > 2 + 1.645(2/+/n) defines the most powerful critical region of size o = 0.05 for testing
Ho; pg = 2 versus Hy; pqy = 4. Note that, in this case
B = Prlz<2+1.645(2/vn)/u=4]
= Pr[z < [-2+1.645(2/v/n)]/(2/v/n)] = Pr[z < 1.645 — \/n|

For n = 4; 8 = Pr[z < —0.355] = 0.3613 shown by the shaded region in Figure 2.4. For n = 9;
3 = Prlz < —1.355] = 0.0877, and for n = 16; 8 = Pr[z < —2.355] = 0.00925.

=

My =2 3.645 py =4
Figure 2.4 Critical Region for Testing 1, = 2 against g =4 forn =4

This gives us an idea of how, for a fixed o = 0.05, the minimum 3 decreases with larger sample
size n. As n increases from 4 to 9 to 16, the var(z) = o2 /n decreases and the two distributions
shown in Figure 2.4 shrink in dispersion still centered around py = 2 and p; = 4, respectively.
This allows better decision making (based on larger sample size) as reflected by the critical
region shrinking from T > 3.65 for n = 4 to T > 2.8225 for n = 16, and the power (1 — () rising
from 0.6387 to 0.9908, respectively, for a fixed a < 0.05. The power function is the probability
of rejecting Hy. It is equal to o under Hy and 1 — 3 under H;. The ideal power function is zero
at Hy and one at H;. The Neyman-Pearson lemma allows us to fix «, say at 0.05, and find the
test with the best power at H;.

In example 2, both the null and alternative hypotheses are simple. In real life, one is more
likely to be faced with testing Hy; u = 2 versus Hi;p # 2. Under the alternative hypothesis,
the distribution is not completely specified, since the mean p is not known, and this is referred
to as a composite hypothesis. In this case, one cannot compute the probability of type II error
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since the distribution is not known under the alternative. Also, the Neyman-Pearson lemma
cannot be applied. However, a simple generalization allows us to compute a Likelihood Ratio
test which has satisfactory properties but is no longer uniformly most powerful of size «. In this
case, one replaces L1, which is not known since H; is a composite hypothesis, by the maximum
value of the likelihood, i.e.,

maxLg

maxL

Since max Lg is the maximum value of the likelihood under the null while max[L is the maximum
value of the likelihood over the whole parameter space, it follows that maxLy < maxL and A < 1.
Hence, if Hy is true, A is close to 1, otherwise it is smaller than 1. Therefore, A < k defines the
critical region for the Likelihood Ratio test, and k is determined such that the size of this test
is a.

Example 3: For a random sample z1,...,x, drawn from a Normal distribution with mean p
and variance 0% = 4, derive the Likelihood Ratio test for Ho;u = 2 versus Hy;pu # 2. In this
case

maxLo = (1/2v27)"exp {— S0, (v; — 2)%/8} = Lo
and

maxL = (1/2v2n)"exp { = 20, (vi — 7)*/8} = L(fiy )
where use is made of the fact that jiy;;p = Z. Therefore,

A=exp {[- 0L, (2 — 2)* + XLy (i — 2)°] /8} = exp {—n(z — 2)/8}

Hence, the region for which A < k, is equivalent after some simple algebra to the following
region

(z—22%>K or |z—2>K'?
where K is determined such that
Prljz —2| > K'Y?/u=2=a

We know that & ~ N(2,4/n) under Hy. Hence, z = (Z — 2)/(2/+/n) is N(0,1) under Hp, and
the critical region of size a will be based upon |z| > 2, /2 where 2,5 is given in Figure 2.5 and
is the value of a N(0,1) random variable such that the probability of exceeding it is «/2. For
a = 0.05, 242 = 1.96, and for a = 0.10, 2,/ = 1.645. This is a two-tailed test with rejection of
Hj obtained in case 2 < —z4/2 Or 2 > 242

Note that in this case

LR = —2logh = (Z — 2)?/(4/n) = 22

which is distributed as X% under Hy. This is because it is the square of a N (0, 1) random variable
under Hy. This is a finite sample result holding for any n. In general, other examples may lead
to more complicated A statistics for which it is difficult to find the corresponding distributions
and hence the corresponding critical values. For these cases, we have an asymptotic result
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Reject Ho Do not reject Ho Reject Ho

ol/2 _ _ al/2

~Zan 0 Zar2

Figure 2.5 Critical Values

which states that, for large n, LR = —2log) will be asymptotically distributed as 2 where v
denotes the number of restrictions that are tested by Hg. For example 2, v = 1 and hence, LR
is asymptotically distributed as x?. Note that we did not need this result as we found LR is
exactly distributed as x? for any n. If one is testing Hy; 1 = 2 and 0 = 4 against the alternative
that Hy; g # 2 or 02 # 4, then the corresponding LR will be asymptotically distributed as x3,
see problem 5, part (f).

Likelihood Ratio, Wald and Lagrange Multiplier Tests

Before we go into the derivations of these three tests we start by giving an intuitive graphical
explanation that will hopefully emphasize the differences among these tests. This intuitive
explanation is based on the article by Buse (1982).

Consider a quadratic log-likelihood function in a parameter of interest, say u. Figure 2.6
shows this log-likelihood logL(u), with a maximum at 7i. The Likelihood Ratio test, tests the
null hypothesis Ho; u = g by looking at the ratio of the likelihoods A\ = L(uy)/L(f) where

logL(1)
log L(f1)
log L, (1) - logLi ()
logZ, (1,)
— logL, (1)
Lo fi "

Figure 2.6 Wald Test
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—2log), twice the difference in log-likelihood, is distributed asymptotically as x? under Hy. This
test differentiates between the top of the hill and a preassigned point on the hill by evaluating
the height at both points. Therefore, it needs both the restricted and unrestricted maximum
of the likelihood. This ratio is dependent on the distance of p from g and the curvature of
the log-likelihood, C'(11) = |0?logL(p)/0p?|, at fi. In fact, for a fixed (i — ), the larger C(ji),
the larger is the difference between the two heights. Also, for a given curvature at fi, the larger
(11 — po) the larger is the difference between the heights. The Wald test works from the top of
the hill, i.e., it needs only the unrestricted maximum likelihood. It tries to establish the distance
to g, by looking at the horizontal distance (i — pg), and the curvature at 1. In fact the Wald
statistic is W = (i — py)?C(11) and this is asymptotically distributed as x? under Hy. The usual
form of W has I(u) = —E[0?logL(p)/0p?] the information matrix evaluated at 7, rather than
C(f1), but the latter is a consistent estimator of I(u). The information matrix will be studied
in details in Chapter 7. It will be shown, under fairly general conditions, that ;i the MLE of
w, has var(i) = I-(u). Hence W = (i — io)?/var(ji) all evaluated at the unrestricted MLE.
The Lagrange-Multiplier test (LM), on the other hand, goes to the preassigned point py, i.e.,
it only needs the restricted maximum likelihood, and tries to determine how far it is from the
top of the hill by considering the slope of the tangent to the likelihood S(u) = dlogL(p)/dp at
o, and the rate at which this slope is changing, i.e., the curvature at . As Figure 2.7 shows,
for two log-likelihoods with the same S(pg), the one that is closer to the top of the hill is the
one with the larger curvature at p.

logL(w) N\

log L, (f1,) log L, (1)
1

logZ, (‘az)
log L(1,)

Ho M, H
Figure 2.7 LM Test

This suggests the following statistic: LM = S?(uy){C(19)}~* where the curvature appears in
inverse form. In the Appendix to this chapter, we show that the E[S(u)] = 0 and var[S(u)] =
I(u). Hence LM = S%(1ug) I (pg) = S?(pg)/var[S(pg)] all evaluated at the restricted MLE.
Another interpretation of the LM test is that it is a measure of failure of the restricted estimator,
in this case py, to satisfy the first-order conditions of maximization of the unrestricted likelihood.
We know that S(i1) = 0. The question is: to what extent does S(p) differ from zero? S(u) is
known in the statistics literature as the score, and the LM test is also referred to as the score
test. For a more formal treatment of these tests, let us reconsider example 3 of a random sample
Z1,...,Ty from a N(u,4) where we are interested in testing Ho; py = 2 versus Hy;u # 2. The
likelihood function L(u) as well as LR = —2log\ = n(Z — 2)?/4 were given in example 3. In
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fact, the score function is given by

_ OlogL(p) _ Ylity(@i—p)  n(Z—p)

S(p) o 1 ==
and under H

Sy) = Sy = "2

o) = 1T ==
and I(p) = —F 821?752(”)} = g = C(p).

The Wald statistic is based on
~ —~ _ n
W = (liyre — 2)2I(MMLE) = (7 - 2)2 ) (Z)
The LM statistic is based on

LM = 8*(puo)I~ " (no) =

Therefore, W = LM = LR for this example with known variance 0> = 4. These tests are all
based upon the |Z — 2| > k critical region, where k is determined such that the size of the test
is a. In general, these test statistics are not always equal, as is shown in the next example.

Example 4: For a random sample 1, ..., z, drawn from a N (u, 0?) with unknown o2, test the
hypothesis Hy; u = 2 versus Hy;pu # 2. Problem 5, part (c), asks the reader to verify that

n 2 2= 2 2/ 2
LR = nlog {W] whereas W = M and LM = Z(x—_z)
i (@i —2)? i (2 — 2)? > i (2 —2)?
One can easily show that LM /n = (W/n)/[14+(W/n)] and LR/n = log[1+(W/n)]. Let y = W/n,
then using the inequality y > log(1 4+ y) > y/(1 + y), one can conclude that W > LR > LM.
This inequality was derived by Berndt and Savin (1977), and will be considered again when we
study test of hypotheses in the general linear model. Note, however that all three test statistics
are based upon |T — 2| > k and for finite n, the same exact critical value could be obtained
from the Normally distributed z. This section introduced the W, LR and LM test statistics, all
of which have the same asymptotic distribution. In addition, we showed that using the normal
distribution, when o2 is known, W = LR = LM for testing Ho;pu = 2 versus Hi;pu # 2.
However, when o2 is unknown, we showed that W > LR > LM for the same hypothesis.

Example 5: For a random sample x1, ..., x, drawn from a Bernoulli distribution with parameter
0, test the hypothesis Hy; 0 = 0 versus Hy;0 # 6y, where 0g is a known positive fraction. This
example is based on Engle (1984). Problem 4, part (i), asks the reader to derive LR, W and
LM for Hy; @ = 0.2 versus Hy; 6 # 0.2. The likelihood L(#) and the Score S(0) were derived in
section 2.2. One can easily verify that

2?21 T
92

0?logL(0)
96*

n— Z?:l Z;

= +
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and

2 O n
[0)=-F {8 lageg(e)] T 019

The Wald statistic is based on
n (i‘ — 90)2

W= @ne =00 10uie) = 2 =0 sy = 203y

using the fact that @MLE = . The LM statistic is based on
(:E — 90)2 . 90(1 - 90) _ (f — 00)2
[90(1—90)/71]2 n 90(1—90)/”
Note that the numerator of the W and LM are the same. It is the denomillator which is the
var(z) = 6(1 — 0)/n that is different. For Wald, this var(z) is evaluated at 0715, whereas for

LM, this is evaluated at 6.
The LR statistic is based on

logL(Orrpr) = Y1, wilogZ + (n — Y2, 2)log(1 — Z)

LM = S*(60)I~ ' (60) =

and

logL(6p) = Y7, wlogby + (n — Y7, x;)log(1 — o)
so that

LR = —2logL(0) + 2logL(frrp) = =237 xi(loghy — logT)

+(n =32 i) (log(1 — b) — log(1 — 7))]

For this example, LR looks different from W and LM. However, a second-order Taylor-Series
expansion of LR around 6y = T yields the same statistic. Also, for n — oo, plim Z = 0 and if
Hy is true, then all three statistics are asymptotically equivalent. Note also that all three test
statistics are based upon |Z — 0y| > k and for finite n, the same exact critical value could be
obtained from the binomial distribution. See problem 19 for more examples of the conflict in
test of hypotheses using the W, LR and LM test statistics.

Bera and Permaratne (2001, p. 58) tell the following amusing story that can bring home
the interrelationship among the three tests: “Once around 1946 Ronald Fisher invited Jerzy
Neyman, Abraham Wald, and C.R. Rao to his lodge for afternoon tea. During their conversation,
Fisher mentioned the problem of deciding whether his dog, who had been going to an “obedience
school” for some time, was disciplined enough. Neyman quickly came up with an idea: leave
the dog free for some time and then put him on his leash. If there is not much difference in
his behavior, the dog can be thought of as having completed the course successfully. Wald,
who lost his family in the concentration camps, was adverse to any restrictions and simply
suggested leaving the dog free and seeing whether it behaved properly. Rao, who had observed
the nuisances of stray dogs in Calcutta streets did not like the idea of letting the dog roam
freely and suggested keeping the dog on a leash at all times and observing how hard it pulls
on the leash. If it pulled too much, it needed more training. That night when Rao was back
in his Cambridge dormitory after tending Fisher’s mice at the genetics laboratory, he suddenly
realized the connection of Neyman and Wald’s recommendations to the Neyman-Pearson LR
and Wald tests. He got an idea and the rest is history.”
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2.5 Confidence Intervals

Estimation methods considered in section 2.2 give us a point estimate of a parameter, say p,
and that is the best bet, given the data and the estimation method, of what p might be. But
it is always good policy to give the client an interval, rather than a point estimate, where with
some degree of confidence, usually 95% confidence, we expect p to lie. We have seen in Figure
2.5 that for a N(0,1) random variable z, we have

Prl—z40 <2< 240 =1 -«

and for v = 5%, this probability is 0.95, giving the required 95% confidence. In fact, z,/, = 1.96
and

Pr[—1.96 < z < 1.96] = 0.95

This says that if we draw 100 random numbers from a N (0, 1) density, (using a normal random
number generator) we expect 95 out of these 100 numbers to lie in the [—1.96,1.96] interval.
Now, let us get back to the problem of estimating p from a random sample z1,...,z, drawn
from a N(u,0?) distribution. We found out that fiy;;z =  and T ~ N(u,0%/n). Hence,
z=(Z—p)/(c/y/n)is N(0,1). The point estimate for y is T observed from the sample, and the
95% confidence interval for p is obtained by replacing z by its value in the above probability
statement:

T—p
Prl—z, < ——= <z =1—-«a
[ a/Q_O'/\/ﬁ_ a/2]
Assuming o is known for the moment, one can rewrite this probability statement after some
simple algebraic manipulations as

PI‘[;E - Zoz/?(o'/\/ﬁ) Splr+ Zoz/?(o'/\/ﬁ)] =l-a

Note that this probability statement has random variables on both ends and the probability that
these random variables sandwich the unknown parameter p is 1 — «. With the same confidence
of drawing 100 random N (0, 1) numbers and finding 95 of them falling in the (—1.96,1.96) range
we are confident that if we drew a 100 samples and computed a 100 Z’s, and a 100 intervals
(z £1.96 o/v/n), p will lie in these intervals in 95 out of 100 times.

If o is not known, and is replaced by s, then problem 12 shows that this is equivalent to
dividing a N(0,1) random variable by an independent X%A random variable divided by its
degrees of freedom, leading to a t-distribution with (n— 1) degrees of freedom. Hence, using the
t-tables for (n — 1) degrees of freedom

Pr[—ta/gm_l <tp-1 < tq/?;n—l] =l-a
and replacing t,_1 by (z — u)/(s/+/n) one gets
Pr[gﬁ — ta/g;nfl(s/\/ﬁ> < M <IT+ toc/2;n71<s/\/ﬁ)] =l-oa

Note that the degrees of freedom (n—1) for the ¢-distribution come from s and the corresponding
critical value ¢,,_1., /9 is therefore sample specific, unlike the corresponding case for the normal
density where z,/, does not depend on n. For small n, the t,/; values differ drastically from
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Table 2.1 Descriptive Statistics for the Earnings Data

Sample: 1 595

LWAGE WKS ED EX MS FEM BLK  UNION
Mean 6.9507 46.4520 12.8450 22.8540 0.8050 0.1126 0.0723 0.3664
Median 6.9847 48.0000 12.0000 21.0000 1.0000 0.0000 0.0000 0.0000
Maximum 8.5370  52.0000 17.0000 51.0000 1.0000 1.0000 1.0000 1.0000
Minimum 5.6768 5.0000 4.0000 7.0000 0.0000 0.0000 0.0000 0.0000
Std. Dev. 0.4384 5.1850 2.7900  10.7900 0.3965 0.3164 0.2592 0.4822
Skewness -0.1140 -2.7309 -0.2581 0.4208 —1.5400 2.4510 3.3038 0.5546
Kurtosis 3.3937  13.7780 2.7127 2.0086 3.3715 7.0075  11.9150 1.3076
Jarque-Bera 5.13  3619.40 8.65 41.93 238.59 993.90  3052.80 101.51
Probability 0.0769 0.0000 0.0132 0.0000 0.0000 0.0000 0.0000 0.0000
Observations 595 595 595 595 595 595 595 595

Zq /2, emphasizing the importance of using the ¢-density in small samples. When n is large the
difference between z, /, and t, /o diminishes as the ¢-density becomes more like a normal density.
For n = 20, and o = 0.05,22,,—1 = 2.093 as compared with z,/2 = 1.96. Therefore,

Pr[—2.093 < t,_; < 2.093] = 0.95

and p lies in & £ 2.093(s/+/n) with 95% confidence.
More examples of confidence intervals can be constructed, but the idea should be clear.

Note that these confidence intervals are the other side of the coin for tests of hypotheses. For
example, in testing Hy; u = 2 versus Hy; p # 2 for a known o, we discovered that the Likelihood
Ratio test is based on the same probability statement that generated the confidence interval
for p. In classical tests of hypothesis, we choose the level of confidence a = 5% and compute
z = (Z — p)/(c//n). This can be done since o is known and p = 2 under the null hypothesis
Hy. Next, we do not reject Hy if z lies in the (—204/27 za/g) interval and reject Hy otherwise. For
confidence intervals, on the other hand, we do not know u, and armed with a level of confidence
(1 — a)% we construct the interval that should contain p with that level of confidence. Having
done that, if ;4 = 2 lies in that 95% confidence interval, then we cannot reject Hy; u = 2 at the
5% level. Otherwise, we reject Hy. This highlights the fact that any value of p that lies in this
95% confidence interval (assuming it was our null hypothesis) cannot be rejected at the 5% level
by this sample. This is why we do not say “accept Hy”, but rather we say “do not reject Hy”.

2.6 Descriptive Statistics

In Chapter 4, we will consider the estimation of a simple wage equation based on 595 individuals
drawn from the Panel Study of Income Dynamics for 1982. This data is available on the Springer
web site as EARN.ASC. Table 2.1 gives the descriptive statistics using EViews for a subset of
the variables in this data set.
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Figure 2.9 Weeks Worked Histogram

The average log wage is $6.95 for this sample with a minimum of $5.68 and a maximum of
$8.54. The standard deviation of log wage is 0.44. A plot of the log wage histogram is given
in Figure 2.8. Weeks worked vary between 5 and 52 with an average of 46.5 and a standard
deviation of 5.2. This variable is highly skewed as evidenced by the histogram in Figure 2.9.
Years of education vary between 4 and 17 with an average of 12.8 and a standard deviation
of 2.79. There is the usual bunching up at 12 years, which is also the median, as is clear from
Figure 2.10.

Experience varies between 7 and 51 with an average of 22.9 and a standard deviation of 10.79.
The distribution of this variable is skewed to the left, as shown in Figure 2.11.

Marital status is a qualitative variable indicating whether the individual is married or not.
This information is recoded as a numeric (1,0) variable, one if the individual is married and zero
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otherwise. This recoded variable is also known as a dummy variable. It is basically a switch
turning on when the individual is married and off when he or she is not. Female is another
dummy variable taking the value one when the individual is a female and zero otherwise. Black
is a dummy variable taking the value one when the individual is black and zero otherwise. Union
is a dummy variable taking the value one if the individual’s wage is set by a union contract and
zero otherwise. The minimum and maximum values for these dummy variables are obvious. But
if they were not zero and one, respectively, you know that something is wrong. The average is a
meaningful statistic indicating the percentage of married individuals, females, blacks and union
contracted wages in the sample. These are 80.5, 11.3,7.2 and 30.6%, respectively. We would
like to investigate the following claims: (i) women are paid less than men; (ii) blacks are paid
less than non-blacks; (iii) married individuals earn more than non-married individuals; and (iv)
union contracted wages are higher than non-union wages.
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Table 2.2 Test for the Difference in Means

Average

log wage Difference
Male $7,004 -0.474
Female $6,530 (-8.86)
Non-Black $6,978 -0.377
Black $6,601 (-5.57)
Not Married $6,664 0.356
Married $7,020 (8.28)
Non-Union $6,945 0.017
Union $6,962 (0.45)

Table 2.3 Correlation Matrix

LWAGE WKS ED EX MS FEM BLK UNION
LWAGE 1.0000 0.0403 0.4566 0.0873 0.3218  -0.3419  -0.2229 0.0183
WKS 0.0403 1.0000 0.0002  -0.1061 0.0782  -0.0875  -0.0594  -0.1721
ED 0.4566 0.0002 1.0000  -0.2219 0.0184  -0.0012  -0.1196 -0.2719
EX 0.0873  -0.1061  -0.2219 1.0000 0.1570  -0.0938 0.0411 0.0689
MS 0.3218 0.0782 0.0184 0.1570 1.0000 -0.7104  -0.2231 0.1189
FEM -0.3419  -0.0875  -0.0012  -0.0938  -0.7104 1.0000 0.2086 -0.1274
BLK -0.2229  -0.0594  -0.1196 0.0411  -0.2231 0.2086 1.0000 0.0302
UNION 0.0183  -0.1721  -0.2719 0.0689 0.1189  -0.1274 0.0302 1.0000

A simple first check could be based on computing the average log wage for each of these cat-
egories and testing whether the difference in means is significantly different from zero. This
can be done using a t-test, see Table 2.2. The average log wage for males and females is given
along with their difference and the corresponding t-statistic for the significance of this differ-
ence. Other rows of Table 2.2 give similar statistics for other groupings. In Chapter 4, we will
show that this t-test can be obtained from a simple regression of log wage on the categorical
dummy variable distinguishing the two groups. In this case, the Female dummy variable. From
Table 2.2, it is clear that only the difference between union and non-union contracted wages are
insignificant.

One can also plot log wage versus experience, see Figure 2.12, log wage versus education, see
Figure 2.13, and log wage versus weeks, see Figure 2.14.

The data shows that, in general, log wage increases with education level, weeks worked, but
that it exhibits a rising and then a declining pattern with more years of experience. Note that
the t-tests based on the difference in log wage across two groupings of individuals, by sex, race or
marital status, or the figures plotting log wage versus education, log wage versus weeks worked
are based on pairs of variables in each case. A nice summary statistic based also on pairwise com-
parisons of these variables is the correlation matrix across the data. This is given in Table 2.3.

The signs of this correlation matrix give the direction of linear relationship between the
corresponding two variables, while the magnitude gives the strength of this correlation. In
Chapter 3, we will see that these simple correlations when squared give the percentage of
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Figure 2.14 Log (Wage) versus Weeks

variation that one of these variables explain in the other. For example, the simple correlation
coefficient between log wage and marital status is 0.32. This means that marital status explains
(0.32)% or 10% of the variation in log wage.

One cannot emphasize enough how important it is to check one’s data. It is important to
compute the descriptive statistics, simple plots of the data and simple correlations. A wrong
minimum or maximum could indicate some possible data entry errors. Troughs or peaks in these
plots may indicate important events for time series data, like wars or recessions, or influential
observations. More on this in Chapter 8. Simple correlation coefficients that equal one indicate
perfectly collinear variables and warn of the failure of a linear regression that has both variables
included among the regressors, see Chapter 4.
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Notes

1.

Actually E(s%) = 02 does not need the normality assumption. This fact along with the proof of
(n —1)s2/0% ~ x2_,, under Normality, can be easily shown using matrix algebra and is deferred
to Chapter 7.

This can be proven using the Chebyshev’s inequality, see Hogg and Craig (1995).

See Hogg and Craig (1995) for the type of regularity conditions needed for these distributions.

Problems

1.

Variance and Covariance of Linear Combinations of Random Variables. Let a,b,c,d,e and f be
arbitrary constants and let X and Y be two random variables.

(a) Show that var(a + bX) = b? var(X).

(b) var(a+ bX + cY) = b*var(X) + c% var(Y) + 2bc cov(X,Y).

(¢) cov[(a+bX 4+ cY), (d+eX + fY)] = be var(X) + ¢f var(Y) + (bf + ce) cov(X,Y).

Independence and Simple Correlation.

(a) Show that if X and Y are independent, then E(XY) = E(X)E(Y) = p,p, where pi, = E(X)
and p, = E(Y'). Therefore, cov(X,Y) = E(X — pu,)(Y — p,)) = 0.

(b) Show that if ¥ = a + bX, where a and b are arbitrary constants, then p,, = 1if b > 0 and
-1ifb<0.

Zero Covariance Does Not Necessarily Imply Independence. Let X = —2,—1,0,1,2 with Pr[X =
x] = 1/5. Assume a perfect quadratic relationship between Y and X, namely Y = X 2. Show that
cov(X,Y) = E(X3) = 0. Deduce that pyy = correlation (X,Y) = 0. The simple correlation coef-
ficient pyy measures the strength of the linear relationship between X and Y. For this example,
it is zero even though there is a perfect nonlinear relationship between X and Y. This is also an
example of the fact that if pxy- = 0, then X and Y are not necessarily independent. p,,, =0 is a
necessary but not sufficient condition for X and Y to be independent. The converse, however, is
true, i.e., if X and Y are independent, then pxy = 0, see problem 2.

The Binomial Distribution is defined as the number of successes in n independent Bernoulli trials
with probability of success 6. This discrete probability function is given by

F(X:0) = <;)9X(1 —o" X X=0,1,...,n

and zero elsewhere, with (%) = n!/[X!(n — X)!].
(a) Out of 20 candidates for a job with a probability of hiring of 0.1. Compute the probabilities
of getting X =5 or 6 people hired?
(b) Show that ()=(,"y) and use that to conclude that b(n, X,) = b(n,n — X,1 - 6).
(¢) Verify that E(X) = nf and var(X) = nf(1 — 0).

(d) Fora random sample of size n drawn from the Bernoulli distribution with parameter ¢, show
that X is the MLE of 6.

(e) Show that X, in part (d), is unbiased and consistent for 6.
(f) Show that X, in part (d), is sufficient for 6.
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(g) Derive the Cramér-Rao lower bound for any unbiased estimator of 6. Is X, in part (d), MVU
for 07

(h) For n = 20, derive the uniformly most powerful critical region of size o < 0.05 for testing
Hy;0 = 0.2 versus Hy; 6 = 0.6. What is the probability of type II error for this test criteria?

(i) Form the Likelihood Ratio test for testing Hp; 0 = 0.2 versus Hy;6 # 0.2. Derive the Wald
and LM test statistics for testing Hy versus H;. When is the Wald statistic greater than the
LM statistic?

5. For a random sample of size n drawn from the Normal distribution with mean p and variance o2.

(a) Show that s? is a sufficient statistic for 2.

(b) Using the fact that (n — 1)s?/0? is x2_; (without proof), verify that E(s?) = 02 and that
var(s?) = 26*/(n — 1) as shown in the text.

(c) Given that o2 is unknown, form the Likelihood Ratio test statistic for testing Ho;p = 2
versus Hi;pu # 2. Derive the Wald and Lagrange Multiplier statistics for testing Hy versus
H;. Verify that they are given by the expressions in example 4.

(d) Another derivation of the W > LR > LM inequality for the null hypothesis given in part (c)
can be obtained as follows: Let 1, 52 be the restricted maximum likelihood estimators under
Hy;n = py. Let 1, 52 be the corresponding unrestricted maximum likelihood estimators
under the alternative Hy;p # po. Show that W = —2log|L(f,°)/L(fi,5%)] and LM =
—2log[L(fi, )/ L(fi,&°)] where L(u, o) denotes the likelihood function. Conclude that W >
LR > LM, see Breusch (1979). This is based on Baltagi (1994).

(e) Given that p is unknown, form the Likelihood Ratio test statistic for testing Hy; o = 3 versus
Hy;0 # 3.
(f) Form the Likelihood Ratio test statistic for testing Ho; p = 2,02 = 4 against the alternative
that Hy;pu # 2 or 02 # 4.
2

(g) For n = 20,52 = 9 construct a 95% confidence interval for o2.

6. The Poisson distribution can be defined as the limit of a Binomial distribution as n — oo and
0 — 0 such that nf = X is a positive constant. For example, this could be the probability of a
rare disease and we are random sampling a large number of inhabitants, or it could be the rare
probability of finding oil and n is the large number of drilling sights. This discrete probability
function is given by

e\

RGN = —

X=012,...

For a random sample from this Poisson distribution

(a) Show that E(X) = A and var(X) = A.

(b) Show that the MLE of A is Aypp = X.

(c) Show that the method of moments estimator of A is also X.

(d) Show that X is unbiased and consistent for .

(e) Show that X is sufficient for .

(f) Derive the Cramér-Rao lower bound for any unbiased estimator of A\. Show that X attains

that bound.

(g) For n =9, derive the Uniformly Most Powerful critical region of size o < 0.05 for testing
Hy; A =2 versus Hy; A = 4.
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(h) Form the Likelihood Ratio test for testing Hy; A = 2 versus Hy; A # 2. Derive the Wald and
LM statistics for testing Hp versus H;. When is the Wald test statistic greater than the LM
statistic?

7. The Geometric distribution is known as the probability of waiting for the first success in indepen-
dent repeated trials of a Bernoulli process. This could occur on the 1st, 2nd, 3rd,.. trials.

g(X;0)=0(1—-60) "1 for X =1,2,3,...

Show that F(X) = 1/0 and var(X) = (1 — 0)/6>.

(b) Given a random sample from this Geometric distribution of size n, find the MLE of # and
the method of moments estimator of .

Show that X is unbiased and consistent for 1/6.

5
&

—
¢
~

For n = 20, derive the Uniformly Most Powerful critical region of size @ < 0.05 for testing
Hy; 0 = 0.5 versus Hy; 0 =0.3.

(e) Form the Likelihood Ratio test for testing Hp; 8 = 0.5 versus Hy; € # 0.5. Derive the Wald
and LM statistics for testing Hy versus H;. When is the Wald statistic greater than the LM
statistic?

—
(=9
N

8. The Uniform density, defined over the unit interval [0, 1], assigns a unit probability for all values
of X in that interval. It is like a roulette wheel that has an equal chance of stopping anywhere
between 0 and 1.

fx)y=1 0<X<l1
=0 elsewhere

Computers are equipped with a Uniform (0,1) random number generator so it is important to
understand these distributions.

(a) Show that E(X) =1/2 and var(X) = 1/12.
(b) What is the Pr[0.1 < X < 0.3]? Does it matter if we ask for the Pr[0.1 < X < 0.3]?

9. The Exponential distribution is given by
1
f(X;0) = gefx/e X >0and 0 >0

This is a skewed and continuous distribution defined only over the positive quadrant.

(a) Show that E(X) =6 and var(X) = 6°.

(b
(
(

)
) Show that /H\MLE =X.
)
d) Show that X is an unbiased and consistent estimator of 6.
)
)
)

¢) Show that the method of moments estimator of 6 is also X.

(e) Show that X is sufficient for 6.
(f
(g

Derive the Cramér-Rao lower bound for any unbiased estimator of 7 Is X MVU for §?
For n = 20, derive the Uniformly Most Powerful critical region of size o < 0.05 for testing
Hy;0 =1 versus Hy;0 = 2.

(h) Form the Likelihood Ratio test for testing Hp;6 = 1 versus Hy; 0 # 1. Derive the Wald and
LM statistics for testing Hy versus H;. When is the Wald statistic greater than the LM
statistic?
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Problems 39
The Gamma distribution is given by

f(X;a,8) = Xo—le=X/B  for X >0

=0 elsewhere
where @ and 8 > 0 and I'(a) = (o — 1)! This is a skewed and continuous distribution.

(a) Show that E(X) = af and var(X) = 3%

(b) For a random sample drawn from this Gamma density, what are the method of moments
estimators of « and 37

(c) Verify that for « = 1 and 8 = 6, the Gamma probability density function reverts to the
Exponential p.d.f. considered in problem 9.

(d) We state without proof that for & = r/2 and 3 = 2, this Gamma density reduces to a x?2
distribution with 7 degrees of freedom, denoted by x2. Show that E(x?2) = r and var(x?) = 2r.

e) For a random sample from the y: distribution, show tha 1X2,...,X,) is a sufficien
F d le from the x?2 distributi how that (X;X X,) i flicient
statistic for .

(f) One can show that the square of a N(0,1) random variable is a x? random variable with
1 degree of freedom, see the Appendix to the chapter. Also, one can show that the sum
of independent x?’s is a x? random variable with degrees of freedom equal the sum of the
corresponding degrees of freedom of the individual x2’s, see problem 15. This will prove useful
for testing later on. Using these results, verify that the sum of squares of m independent
N(0,1) random variables is a x? with m degrees of freedom.

The Beta distribution is defined by

f(X) = %xa*u — X))t for0< X <1
=0 elsewhere

where @ > 0 and (8 > 0. This is a skewed continuous distribution.

(a) For @« = 8 = 1 this reverts back to the Uniform (0,1) probability density function. Show
that E(X) = (a/a + ) and var(X) = a3/(a + B)*(a + 8 + 1).

(b) Suppose that a = 1, find the estimators of 3 using the method of moments and the method
of maximum likelihood.

The t-distribution with r degrees of freedom can be defined as the ratio of two independent random
variables. The numerator being a N (0, 1) random variable and the denominator being the square-
root of a x2 random variable divided by its degrees of freedom. The ¢-distribution is a symmetric
distribution like the Normal distribution but with fatter tails. As r — oo, the t-distribution
approaches the Normal distribution.

(a) Verify that if X1,..., X, are a random sample drawn from a N(u, o?) distribution, then
z= (X —p)/(o/vn)is N(0,1).

(b) Use the fact that (n —1)s®/0® ~ xZ_; to show that ¢ = z/\/s?/0? = (X — u)/(s/\/n) has a
t-distribution with (n — 1) degrees of freedom. We use the fact that s? is independent of X
without proving it.

(c) For n =16, # = 20 and s% = 4, construct a 95% confidence interval for j.
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13.

14.

15.

16.
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The F-distribution can be defined as the ratio of two independent x? random variables each divided
by its corresponding degrees of freedom. It is commonly used to test the equality of variances. Let
52 be the sample variance from a random sample of size n; drawn from N(p;,0?) and let s2 be
the sample variance from another random sample of size ny drawn from N (p,, 03). We know that
(n1 —1)s?/0t is X{,, ) and (n2 — 1)s3/03 is x{,,,_,)- Taking the ratio of those two independent
x? random variables divided by their appropriate degrees of freedom yields

_ 3o
3/3

which under the null hypothesis Ho; 07 = 03 gives F = s7/53 and is distributed as F with (n; —1)
and (ng — 1) degrees of freedom. Both s? and s3 are observable, so F' can be computed and
compared to critical values for the F-distribution with the appropriate degrees of freedom. Two
inspectors drawing two random samples of size 25 and 31 from two shifts of a factory producing
steel rods, find that the sampling variance of the lengths of these rods are 15.6 and 18.9 inches
squared. Test whether the variances of the two shifts are the same.

Moment Generating Function (MGF).

(a) Derive the MGF of the Binomial distribution defined in problem 4. Show that it is equal to
[(1—0)+ 0e'].

(b) Derive the MGF of the Normal distribution defined in problem 5. Show that it is e#t+37°t",

(c¢) Derive the MGF of the Poisson distribution defined in problem 6. Show that it is eMe 1),

(d) Derive the MGF of the Geometric distribution defined in problem 7. Show that it is fe’/[1 —

(1—0)et].
(e) Derive the MGF of the Exponential distribution defined in problem 9. Show that it is 1/(1 —
0t).

(f) Derive the MGF of the Gamma distribution defined in problem 10. Show that it is (1—5t) .
Conclude that the MGF of a x2 is (1 — 2t)~%.

(g) Obtain the mean and variance of each distribution by differentiating the corresponding MGF
derived in parts (a) through (f).
Moment Generating Function Method.

(a) Show that if X3,...,X,, are independent Poisson distributed with parameters ();) respec-
tively, then Y =Y | X; is Poisson with parameter > ., A;.

(b) Show that if X1,..., X,, are independent Normally distributed with parameters (p1;, 0%), then
Y =>"" | X; is Normal with mean -, y; and variance Y., o2.

(c) Deduce from part (b) that if X1,..., X, are IIN(u, 0?), then X ~ N(u,a%/n).

(d) Show that if Xi,..., X, are independent x? distributed with parameters (r;) respectively,
then Y = E?:l X, is x? distributed with parameter Z:-L:l 7.

Best Linear Prediction. (Problems 16 and 17 are based on Amemiya (1994)). Let X and Y be two

random variables with means iy and uy and variances 0% and 0%, respectively. Suppose that

p = correlation(X,Y) = oxy/oxoy
where 0 xy = cov(X,Y). Consider the linear relationship Y = o+ 3X where a and 3 are scalars:

(a) Show that the best linear predictor of Y based on X, where best in this case means the
minimum mean squared error predictor which minimizes E(Y — o — 3X)? with respect to a

and 3 is given by Y = @ + BX where @ = Ly — Eux and § = oxy/o% = poy/ox.
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(b) Show that the V&I‘(?) =p?02 and that U =Y — Y, the prediction error, has mean zero and
variance equal to (1 — p2)0'%/. Therefore, p? can be interpreted as the proportion of cr%, that
is explained by the best linear predictor Y.

(c) Show that cov(?,ﬂ) =0.

17. The Best Predictor. Let X and Y be the two random variables considered in problem 16. Now
consider predicting Y by a general, possibly non-linear, function of X denoted by h(X).

(a) Show that the best predictor of Y based on X, where best in this case means the minimum
mean squared error predictor that minimizes E[Y — h(X)]? is given by h(X) = E(Y/X).
Hint: Write E[Y — h(X)]? as E{[Y — E(Y/X)] + [E(Y/X) — h(X)]}?. Expand the square
and show that the cross-product term has zero expectation. Conclude that this mean squared
error is minimized at h(X) = E(Y/X).

(b) If X and Y are bivariate Normal, show that the best predictor of Y based on X is identical
to the best linear predictor of Y based on X.

18. Descriptive Statistics. Using the data used in section 2.6 based on 595 individuals drawn from the
Panel Study of Income Dynamics for 1982 and available on the Springer web site as EARN.ASC,
replicate the tables and graphs given in that section. More specifically

(a) replicate Table 2.1 which gives the descriptive statistics for a subset of the variables in this
data set.

(b) Replicate Figures 2.6-2.11 which plot the histograms for log wage, weeks worked, education
and experience.

(c¢) Replicate Table 2.2 which gives the average log wage for various groups and test the difference
between these averages using a t-test.

(d) Replicate Figure 2.12 which plots log wage versus experience. Figure 2.13 which plots log
wage versus education and Figure 2.14 which plots log wage versus weeks worked.

(e) Replicate Table 2.3 which gives the correlation matrix among a subset of these variables.

19. Conflict Among Criteria for Testing Hypotheses: Examples from Non-Normal Distributions. This
is based on Baltagi (2000). Berndt and Savin (1977) showed that W > LR > LM for the case of
a multivariate regression model with normal distrubances. Ullah and Zinde-Walsh (1984) showed
that this inequality is not robust to non-normality of the disturbances. In the spirit of the latter
article, this problem considers simple examples from non-normal distributions and illustrates how
this conflict among criteria is affected.

(a) Consider a random sample z1, x9, . .., x, from a Poisson distribution with parameter A. Show
that for testing A = 3 versus A # 3 yields W > LM for z <3 and W < LM for z > 3.

(b) Counsider a random sample 1,9, ..., 2z, from an Exponential distribution with parameter
0. Show that for testing 8 = 3 versus 0 # 3 yields W > LM for 0 <z <3 and W < LM for
z>3.

(c) Consider a random sample z1, 2, ..., &, from a Bernoulli distribution with parameter 6.

Show that for testing 8 = 0.5 versus 6 # 0.5, we will always get W > LM. Show also, that
for testing 0 = (2/3) versus 0 # (2/3) we get W < LM for (1/3) <z < (2/3) and W > LM
for (2/3) <z <1lor0<z<(1/3).
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Appendix

Score and Information Matriz: The likelihood function of a sample X, ..., X,, drawn from f(X;,6)
is really the joint probability density function written as a function of 6:

L) = f(X1,...,Xn; 0)

This probability density function has the property that [ L(f)dx = 1 where the integral is over all
Xq,...,X, written compactly as one integral over x. Differentiating this multiple integral with respect
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to @, one gets

OL

Multiplying and dividing by L, one gets

10L _ OlogL _

But the score is by definition S(f) = dlogL/d6. Hence E[S(#)] = 0. Differentiating again with respect
to 0, one gets

F1(75) 0 (25 ()] -

Multiplying and dividing the second term by L one gets

5 _azlogL OlogL 2
06° 90

=0

or

= E[S(0))?

[ 0%logL dlogL >
s[5E] -5 |(%)

But var[S(6)] = E[S(6)]? since E[S()] = 0. Hence 1(8) = var[S(6)].

Moment Generating Function (MGF): For the random variable X, the expected value of a special
function of X, namely eX? is denoted by
5t

2
My (t) = B(eX") = B(1 + Xt + XZ% + XL 4.)

where the second equality follows from the Taylor series expansion of eX? around zero. Therefore,

2 3
Mx(t) =1+ E(X)t + E(XQ);—' + E(X3)% +.
This function of ¢ generates the moments of X as coefficients of an infinite polynomial in ¢. For example,
= E(X) = coefficient of ¢, and E(X?2)/2 is the coefficient of 2, etc. Alternatively, one can differentiate
this MGF with respect to t and obtain p = E(X) = M%(0), ie., the first derivative of Mx (t) with
respect to ¢ evaluated at ¢t = 0. Similarly, E(X") = M%(0) which is the r-th derivative of Mx(t) with
respect to ¢ evaluated at ¢ = 0. For example, for the Bernoulli distribution;

Mx(t) = B(eXt) =%, X107 (1 — )X = 0e! + (1—0)

so that M4 (t) = et and M% (0) = = E(X) and M¥(t) = fe! which means that E(X?) = M%(0) = 6.
Hence,

var(X) = E(X?) — (B(X))? =60 -6 =0(1 —0).

For the Normal distribution, see problem 14, it is easy to show that if X ~ N(u,0?), then Mx(t) =
e+ 377 and M (0) = B(X) = p and M%(0) = B(X?2) = 02 + 2.

There is a one-to-one correspondence between the MGF when it exists and the corresponding p.d.f.
This means that if Y has a MGF given by 248 then Y is normally distributed with mean 2 and
variance 8. Similarly, if Z has a MGF given by (e’ +1)/2, then Z is Bernoulli distributed with § = 1/2.
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Change of Variable: If X ~ N(0,1), then one can find the distribution function of Y = |X| by using
the Distribution Function method. By definition the distribution function of y is defined as

G(y) = Prly <yl =Pr[|X][<y]=Pr[-y < X <y]
Pr(X <y] —Pr[X < —y] = F(y) — F(~y)

so that the distribution function of Y, G(y), can be obtained from the distribution function of X, F(x).
Since the N(0,1) distribution is symmetric around zero, then F(—y) = 1 — F(y) and substituting
that in G(y) we get G(y) = 2F(y) — 1. Recall, that the p.d.f. of Y is given by g(y) = G'(y). Hence,
9(y) = f(y) + f(—y) and this reduces to 2f(y) if the distribution is symmetric around zero. So that if
flz) = e‘ZQ/Z/\/% for —oco < = < 400 then g(y) = 2f(y) = 26_1/2/2/\/% for y > 0.

Let us now find the distribution of Z = X2, the square of a N(0,1) random variable. Note that
dZ/dX = 2X which is positive when X > 0 and negative when X < 0. The change of variable method
cannot be applied since Z = X2 is not a monotonic transformation over the entire domain of X . However,
using Y = | X|, we get Z = Y? = (|X|)? and dZ/dY = 2Y which is always non-negative since Y is non-
negative. In this case, the change of variable method states that the p.d.f. of Z is obtained from that
of Y by substituting the inverse transformation Y = v/Z into the p.d.f. of ¥ and multiplying it by the
absolute value of the derivative of the inverse transformation:

dY 2 1
= —e %2 —— 222 for 2> 0

1
EAY WL =

It is clear why this transformation will not work for X since Z = X2 has two solutions for the inverse
transformation, X = ++v/Z, whereas, there is one unique solution for ¥ = v/Z since it is non-negative.
Using the results of problem 10, one can deduce that Z has a gamma distribution with @ = 1/2 and
B = 2. This special Gamma density function is a x? distribution with 1 degree of freedom. Hence, we
have shown that the square of a N (0, 1) random variable has a x? distribution.

Finally, if X1,...,X, are independently distributed then the distribution function of ¥ = >0 | X;
can be obtained from that of the X;’s using the Moment Generating Function (MGF) method:

My(t) = E(¥) = EleXi= XY = BeXit)B(eX2t). E(eXnt)
= Mx, (t)Mx,(t).-Mx,(t)

h(z) = g(Vz)-|

If in addition these X;’s are identically distributed, then Mx,(t) = Mx(t) fori=1,...,n and
My (t) = [Mx(t)]"

For example, if X1, ...,X,, are IID Bernoulli (9), then Mx, (t) = Mx(t) =0e' +(1—0) fori=1,...,n.
Hence the MGF of Y = """ | X; is given by

My (t) = [Mx (t)]" = [fe" + (1 - 0)]"

This can be easily shown to be the MGF of the Binomial distribution given in problem 14. This proves
that the sum of n independent and identically distributed Bernoulli random variables with parameter 0
is a Binomial random variable with same parameter 6.

X —
Central Limit Theorem: If X1,..., X,, are IID(y, 0?) from an unknown distribution, then Z = ad
is asymptotically distributed as N (0, 1). o/vn

Proof: We assume that tzhe MGF of the X;’s exist and derive the MGF of Z. Next, we show that lim
Mz(t) as n — oo is €!/2"" which is the MGF of N(0, 1) distribution. First, note that

_ S X —np Y-
ov/n o\/n

Z
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where Y = > | X; with My (¢) = [Mx(t)]". Therefore,
Mz(t) _ E(eZt) - B (e(thnut)/a\/ﬁ) _ e*"l“f/a\/ﬁE (eYt/a\/ﬁ)
= e MMy (t/on/n) = e MOV M (t/o/n))"
Taking log of both sides we get

t3

t2
—F
* 603n+\/n

202n

—nut
logMz(t) = e, nlog[1l +

o E(X?)

E(X)+ (X3)+.]

t
ov/n
s2 88

Using the Taylor series expansion log(l + s) = s — ) + 5 - we get

N t t2 5 t3 3
logMz(t) = ———t —+ ——E(X ——F(X .
ogMz(t) o o Ma\/ﬁ * 20%n (X5 + 603n+/n (X +

_1 L + t2 E(XQ) 4 L
2 MU\/H 20%n 6a3n+/n
[ ¢ 2 3 s

— |p—=+ ——=F(X? — —B(X+.| —.
+3 |:NU\/E * 202\/n (X5) + 603ny/n (X%) + } }

Collecting powers of ¢, we get

log M () = <_@+@)t+(w u2)t2

E(X®) + } ’

202 202

<E(X3> 1 2uB(X?) éaﬁ >t3+._

603yn 2 203/n 3./n
Therefore
1 E(X3) uE(X?% t3
logM 4 (t) = =t* - L .
ogMz(t) = 3 +( 6 2 3 )y "

note that the coefficient of ¢ is 1/1/n times a constant. Therefore, this coefficient goes to zero as n — oo.
Similarly, it can be shown that the coefficient of t" is 1/v/n"~? times a constant for r > 3. Hence,

lim logMz(t) = th and lim Mz(t) = ez’

n—oo 2 n—oo
which is the MGF of a standard normal distribution.

The Central Limit Theorem is a powerful tool for asymptotic inference. In real life we do not know
what distribution we are sampling from, but as long as the sample drawn is random and we average (or
sum) and standardize then as n — oo, the resulting standardized statistic has an asymptotic N(0,1)
distribution that can be used for inference.

Using a random number generator from say the uniform distribution on the computer, one can generate
samples of size n = 20, 30, 50 from this distribution and show how the sampling distribution of the sum
(or average) when it is standardized closely approximates the N(0,1) distribution.

The real question for the applied researcher is how large n should be to invoke the Central Limit
Theorem. This depends on the distribution we are drawing from. For a Bernoulli distribution, a larger
n is needed the more asymmetric this distribution is i.e., if # = 0.1 rather than 0.5.

In fact, Figure 2.15 shows the Poisson distribution with mean = 15. This looks like a good approx-
imation for a Normal distribution even though it is a discrete probability function. Problem 15 shows
that the sum of n independent identically distributed Poisson random variables with parameter A is
a Poisson random variable with parameter (nA). This means that if A = 0.15, an n of 100 will lead
to the distribution of the sum being Poisson (nA = 15) and the Central Limit Theorem seems well
approximated.



46 CHAPTER 2: Basic Statistical Concepts
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Figure 2.15 Poisson Probability Distribution, Mean = 15
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Figure 2.16 Poisson Probability Distribution, Mean = 1.5
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However, if A\ = 0.015, an n of 100 will lead to the distribution of the sum being Poisson (nA = 1.5)
which is given in Figure 2.16. This Poisson probability function is skewed and discrete and does not
approximate well a normal density. This shows that one has to be careful in concluding that n = 100 is a
large enough sample for the Central Limit Theorem to apply. We showed in this simple example that this
depends on the distribution we are sampling from. This is true for Poisson (A = 0.15) but not Poisson
(A =0.015), see Joliffe (1995). The same idea can be illustrated with a skewed Bernoulli distribution.

Conditional Mean and Variance: Two random variables X and Y are bivariate Normal if they have
the following joint distribution:

) _ 1 1 T — 2 Y — My 2
fley) = 2wo o,\/1—p? exp{—2(1p2) [( Ox ) +( Oy )

() ()l
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where —00 < 2 < +00, —00 < Yy < +00, B(X) = py, E(Y) = piy, var(X) = 0%, var(Y) = 0% and p =
correlation (X,Y) = cov(X,Y)/oxoy. This joint density can be rewritten as

1 1 o, 2
o= e i exp{‘m o =05 ) }
1 1 L ) )
2oy eXp{_Qggg (= px) }*f(y/l)ﬁ(a)

where f1(z) is the marginal density of X and f(y/x) is the conditional density of Y given X. In this

case, X ~ N(uy,0%) and Y/X is Normal with mean E(Y/X) = py + pg—y(x — 11,) and variance given
X

by var(Y/X) = 02.(1 — p?).

By symmetry, the roles of X and Y can be interchanged and one can write f(z,y) = f(z/y) f2(y)
where fo(y) is the marginal density of Y. In this case, Y ~ N(uy,0%) and X/Y is Normal with mean
EX)Y)=pyx + pg—x(y — p1y) and variance given by var(X/Y) = 0% (1 — p?). If p = 0, then f(y/z) =

Y
fa(y) and f(z,y) = fi(z)f2(y) proving that X and Y are independent. Therefore, if cov(X,Y) = 0 and
X and Y are bivariate Normal, then X and Y are independent. In general, cov(X,Y) = 0 alone does
not necessarily imply independence, see problem 3.

One important and useful property is the law of iterated expectations. This says that the expectation
of any function of X and Y say h(X,Y’) can be obtained as follows:

Eh(X,Y)] = ExEy;x[MX,Y)]

where the subscript Y/X on E means the conditional expectation of ¥ given that X is treated as a
constant. The next expectation Ex treats X as a random variable. The proof is simple.

+oo +o00
Elh(X,Y)] = / / Wz, y) f(z,y)dady

where f(z,y) is the joint density of X and Y. But f(z,y) can be written as f(y/z)fi(x), hence
B[R, V)] = [ [[13 hlw,y)f (9/2)dy] frlw)de = Bx By xh(X,Y)].
Example: This law of iterated expectation can be used to show that for the bivariate Normal density,

the parameter p is indeed the correlation coefficient of X and Y. In fact, let h(X,Y) = XY, then
o
E(XY) = BExBEyx(XY/X)=ExXE(Y/X)=ExX[uy +p=(X — px)]

X
_ Ov 2 _
= pxHy + P 0x = fxty +tpoyox
X
Rearranging terms, one gets p = [E(XY) — uxpy|/oxoy = oxy/oxoy as required.

Another useful result pertains to the unconditional variance of h(X,Y’) being the sum of the mean of
the conditional variance and the variance of the conditional mean:

var(h(X,Y)) = Exvary,x [M(X,Y)] 4+ varx By, x [A(X,Y)]
Proof: We will write h(X,Y) as h to simplify the presentation
vary,x (h) = Ey;x(h*) — [By,x (h)]?

and taking expectations with respect to X yields Exvary, x (h) = ExEy;x(h?) — Ex|[Ey/x (h)]?
Also, varx Ey, x (h) = Ex[Ey;x (h)]> = (Ex[Ey,x (h)])? = Ex[Ey,x(h)]* — [E(h)]* adding these two
terms yields

E(h?) — [E(h)])? = var(h).






CHAPTER 3
Simple Linear Regression

3.1 Introduction

In this chapter, we study extensively the estimation of a linear relationship between two vari-
ables, Y; and X;, of the form:

Yi=a+8X;+u; i=1,2,...,n (3.1)

where Y; denotes the i-th observation on the dependent variable Y which could be consumption,
investment or output, and X; denotes the i-th observation on the independent variable X which
could be disposable income, the interest rate or an input. These observations could be collected
on firms or households at a given point in time, in which case we call the data a cross-section.
Alternatively, these observations may be collected over time for a specific industry or country
in which case we call the data a time-series. n is the number of observations, which could be
the number of firms or households in a cross-section, or the number of years if the observations
are collected annually. o and 3 are the intercept and slope of this simple linear relationship
between Y and X. They are assumed to be unknown parameters to be estimated from the data.
A plot of the data, i.e., Y versus X would be very illustrative showing what type of relationship
exists empirically between these two variables. For example, if YV is consumption and X is
disposable income then we would expect a positive relationship between these variables and
the data may look like Figure 3.1 when plotted for a random sample of households. If « and
0 were known, one could draw the straight line (o + $X) as shown in Figure 3.1. It is clear
that not all the observations (X;,Y;) lie on the straight line (o 4+ 5X). In fact, equation (3.1)
states that the difference between each Y; and the corresponding (« 4+ 5X;) is due to a random
error u;. This error may be due to (i) the omission of relevant factors that could influence
consumption, other than disposable income, like real wealth or varying tastes, or unforseen
events that induce households to consume more or less, (ii) measurement error, which could be
the result of households not reporting their consumption or income accurately, or (iii) wrong
choice of a linear relationship between consumption and income, when the true relationship
may be nonlinear. These different causes of the error term will have different effects on the
distribution of this error. In what follows, we consider only disturbances that satisfy some
restrictive assumptions. In later chapters we relax these assumptions to account for more general
kinds of error terms.

In real life, & and 3 are not known, and have to be estimated from the observed data {(X;,Y;)
fori=1,2,...,n}. This also means that the true line (o4 $X) as well as the true disturbances
(the wu;’s) are unobservable. In this case, a and 3 could be estimated by the best fitting line
through the data. Different researchers may draw different lines through the same data. What
makes one line better than another? One measure of misfit is the amount of error from the
observed Y; to the guessed line, let us call the latter 2 =a+ BXi, where the hat (") denotes
a guess on the appropriate parameter or variable. Each observation (X;,Y;) will have a cor-
responding observable error attached to it, which we will call e; = Y; — ﬁ, see Figure 3.2. In

o~

other words, we obtain the guessed Yj, (Y;) corresponding to each X; from the guessed line,
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a+ BXi. Next, we find our error in guessing that Y;, by subtracting the actual Y; from the
guessed }A/; The only difference between Figure 3.1 and Figure 3.2 is the fact that Figure 3.1
draws the true consumption line which is unknown to the researcher, whereas Figure 3.2 is a
guessed consumption line drawn through the data. Therefore, while the w;’s are unobservable,
the e;’s are observable. Note that there will be n errors for each line, one error corresponding
to every observation.

Similarly, there will be another set of n errors for another guessed line drawn through the
data. For each guessed line, we can summarize its corresponding errors by one number, the sum
of squares of these errors, which seems to be a natural criterion for penalizing a wrong guess.
Note that a simple sum of these errors is not a good choice for a measure of misfit since positive
errors end up canceling negative errors when both should be counted in our measure. However,
this does not mean that the sum of squared error is the only single measure of misfit. Other
measures include the sum of absolute errors, but this latter measure is mathematically more
difficult to handle. Once the measure of misfit is chosen, & and 3 could then be estimated by
minimizing this measure. In fact, this is the idea behind least squares estimation.

3.2 Least Squares Estimation and the Classical Assumptions

Least squares minimizes the residual sum of squares where the residuals are given by
e, =Y, —a—pX; i=1,2,...,n

and a and @ denote guesses on the regression parameters o and (3, respectively. The residual
sum of squares denoted by RSS = Y"1 e? = Y0 (Y; — @ — $X;)? is minimized by the two
first-order conditions:

a(Z?:1 31‘2)/30‘ = _22?:1 e; =0; or Z?:l Y; —na — ﬁZ?zl Xi=0 (3.2)

n ~
O ejoB =230 1eX;=0;0or YL Y X;—ad> X;— B0, X2=0 (3.3
i=1
Solving the least squares normal equations given in (3.2) and (3.3) for « and 3 one gets
doLs =Y — BorsX and Bors = Yry wiyi/ Siy o7 (3.4)

where Y =30 Vi/n, X =310  Xi/n,y; =Y, =Y, ;= X; — X,> 0 22 =" X? —nX?,
Yy = Y —nY? and 3wy = 3, XYy —n XY

These estimators are subscripted by OLS denoting the ordinary least squares estimators. The
OLS residuals e; = Y; — @ors — BorsX: automatically satisfy the two numerical relationships
given by (3.2) and (3.3). The first relationship states that (i) Y., e; = 0, the residuals sum
to zero. This is true as long as there is a constant in the regression. This numerical property
of the least squares residuals also implies that the estimated regression line passes through the
sample means (X,Y). To see this, average the residuals, or equation (3.2), this gives immediately
Y =adors + BOLSX' The second relationship states that (i) > ; €;X; = 0, the residuals and
the explanatory variable are uncorrelated. Other numerical properties that the OLS estimators
satisfy are the following: (iii) Y i, Y, = Yo Y and (iv) Yo e;Y; = 0. Property (iii) states
that the sum of the estimated Y;’s or the predicted Y;’s from the sample is equal to the sum of the
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actual Y;’s. Property (iv) states that the OLS residuals and the predicted Y;’s are uncorrelated.
The proof of (iii) and (iv) follow from (i) and (ii) see problem 1. Of course, underlying our
estimation of (3.1) is the assumption that (3.1) is the true model generating the data. In this
case, (3.1) is linear in the parameters o and [, and contains only one explanatory variable
X, besides the constant. The inclusion of other explanatory variables in the model will be
considered in Chapter 4, and the relaxation of the linearity assumption will be considered in
Chapters 8 and 13. In order to study the statistical properties of the OLS estimators of o and
G, we need to impose some statistical assumptions on the model generating the data.

Assumption 1: The disturbances have zero mean, i.e., E(u;) = 0 for every ¢ = 1,2,...,n. This
assumption is needed to insure that on the average we are on the true line.

To see what happens if F(u;) # 0, consider the case where households consistently under-report
their consumption by a constant amount of § dollars, while their income is measured accurately,
say by cross-referencing it with their IRS tax forms. In this case,

(Observed Consumption) = (True Consumption) — §
and our regression equation is really

(True Consumption); = a + B(Income); + u;
But we observe,

(Observed Consumption); = a + B(Income); +u; — ¢
This can be thought of as the old regression equation with a new disturbance term u; = u; — 0.
Using the fact that 6 > 0 and E(u;) = 0, one gets E(uf) = —0 < 0. This says that for

all households with the same income, say $20,000, their observed consumption will be on the
average below that predicted from the true line [a+/5($20,000)] by an amount §. Fortunately, one
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can deal with this problem of constant but non-zero mean of the disturbances by reparametizing
the model as

(Observed Consumption); = o™ + B(Income); + u;

where a* = a — 4. In this case, E(u;) = 0 and o* and § can be estimated from the regression.
Note that while o* is estimable, o and § are non-estimable. Also note that for all $20,000
income households, their average consumption is [(a — §) + 3($20, 000)].

Assumption 2: The disturbances have a constant variance, i.e., var(u;) = o2 for every i =
1,2,...,n. This insures that every observation is equally reliable.

To see what this assumption means, consider the case where var(u;) = o2, for i = 1,2,...,n.

In this case, each observation has a different variance. An observation with a large variance is
less reliable than one with a smaller variance. But, how can this differing variance happen? In
the case of consumption, households with large disposable income (a large X;, say $100,000)
may be able to save more (or borrow more to spend more) than households with smaller income
(a small X;, say $10,000). In this case, the variation in consumption for the $100,000 income
household will be much larger than that for the $10,000 income household. Therefore, the
corresponding variance for the $100,000 observation will be larger than that for the $10,000
observation. Consequences of different variances for different observations will be studied more
rigorously in Chapter 5.

Assumption 3: The disturbances are not correlated, i.e., E(u;u;) = 0 for i # j,i,5 = 1,2,...,n.
Knowing the i-th disturbance does not tell us anything about the j-th disturbance, for i # j.

For the consumption example, the unforseen disturbance which caused the i-th household to
consume more, (like a visit of a relative), has nothing to do with the unforseen disturbances of
any other household. This is likely to hold for a random sample of households. However, it is
less likely to hold for a time series study of consumption for the aggregate economy, where a
disturbance in 1945, a war year, is likely to affect consumption for several years after that. In
this case, we say that the disturbance in 1945 is related to the disturbances in 1946, 1947, and
so on. Consequences of correlated disturbances will be studied in Chapter 5.

Assumption 4: The explanatory variable X is nonstochastic, i.e., fixed in repeated samples,
and hence, not correlated with the disturbances. Also, Y 7" | x?/n # 0 and has a finite limit as
n tends to infinity.

This assumption states that we have at least two distinct values for X. This makes sense, since
we need at least two distinct points to draw a straight line. Otherwise X = X, the common
value, and £ = X — X = 0, which violates Yo x? # 0. In practice, one always has several
distinct values of X. More importantly, this assumption implies that X is not a random variable
and hence is not correlated with the disturbances.

In section 5.3, we will relax the assumption of a non-stochastic X. Basically, X becomes
a random variable and our assumptions have to be recast conditional on the set of X’s that
are observed. This is the more realistic case with economic data. The zero mean assumption
becomes E(u;/X) = 0, the constant variance assumption becomes var(u;/X) = o2, the no serial
correlation assumption becomes E(u;uj/X) = 0 for i # j. The conditional expectation here is
with respect to every observation on X, from ¢ = 1,2,...n. Of course, one can show that if
E(u;/X) = 0 for all 4, then X; and u; are not correlated. The reverse is not necessarily true, see
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problem 3 of Chapter 2. That problem shows that two random variables, say u; and X; could be
uncorrelated, i.e., not linearly related when in fact they are nonlinearly related with u; = XZ-2 .
Hence, E(u;/X;) = 0 is a stronger assumption than u; and X; are not correlated. By the law of
iterated expectations given in the Appendix of Chapter 2, E(u;/X) = 0 implies that E(u;) = 0.
It also implies that u; is uncorrelated with any function of X;. This is a stronger assumption
than wu; is uncorrelated with X;. Therefore, conditional on Xj;, the mean of the disturbances is
zero and does not depend on X;. In this case, E(Y;/X;) = a + X, is linear in « and 8 and is
assumed to be the true conditional mean of Y given X.

To see what a violation of assumption 4 means, suppose that X is a random variable and that
X and u are positively correlated, then in the consumption example, households with income
above the average income will be associated with disturbances above their mean of zero, and
hence positive disturbances. Similarly, households with income below the average income will be
associated with disturbances below their mean of zero, and hence negative disturbances. This
means that the disturbances are systematically affected by values of the explanatory variable
and the scatter of the data will look like Figure 3.3. Note that if we now erase the true line
(o + X)), and estimate this line from the data, the least squares line drawn through the data
is going to have a smaller intercept and a larger slope than those of the true line. The scatter
should look like Figure 3.4 where the disturbances are random variables, not correlated with
the X;’s, drawn from a distribution with zero mean and constant variance. Assumptions 1 and
4 insure that F(Y;/X;) = a+ 8X;, i.e., on the average we are on the true line. Several economic
models will be studied where X and u are correlated. The consequences of this correlation will
be studied in Chapters 5 and 11.

We now generate a data set which satisfies all four classical assumptions. Let a and [ take
the arbitrary values, say 10 and 0.5 respectively, and consider a set of 20 fixed X’s, say income
classes from $10 to $105 (in thousands of dollars), in increments of $5, i.e., $10, $15, $20,
$25,...,8105. Our consumption variable Y; is constructed as (10 + 0.5X; + u;) where u; is a
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disturbance which is a random draw from a distribution with zero mean and constant variance,
say 02 = 9. Computers generate random numbers with various distributions.

In this case, Figure 3.4 would depict our data, with the true line being (10 4+ 0.5X) and w;
being random draws from the computer which are by construction independent and identically
distributed with mean zero and variance 9. For every set of 20 w;’s randomly generated, given
the fixed X;’s, we obtain a corresponding set of 20 Y;’s from our linear regression model. This is
what we mean in assumption 4 when we say that the X’s are fixed in repeated samples. Monte
Carlo experiments generate a large number of samples, say a 1000, in the fashion described
above. For each data set generated, least squares can be performed and the properties of the
resulting estimators which are derived analytically in the remainder of this chapter, can be
verified. For example, the average of the 1000 estimates of a and § can be compared to their
true values to see whether these least squares estimates are unbiased. Note what will happen to
Figure 3.4 if E(u;) = —§ where § > 0, or var(u;) = o7 for i = 1,2,...,n. In the first case, the
mean of f(u), the probability density function of u, will shift off the true line (104+0.5X) by —d.
In other words, we can think of the distributions of the u;’s, shown in Figure 3.4 , being centered
on a new imaginary line parallel to the true line but lower by a distance 4. This means that one
is more likely to draw negative disturbances than positive disturbances, and the observed Y;’s
are more likely to be below the true line than above it. In the second case, each f(u;) will have
a different variance, hence the spread of this probability density function will vary with each
observation. In this case, Figure 3.4 will have a distribution for the u;’s which has a different
spread for each observation. In other words, if the u;’s are say normally distributed, then wu; is
drawn from a N(0,0%) distribution, whereas us is drawn from a N(0,03) distribution, and so
on. Violation of the classical assumptions can also be studied using Monte Carlo experiments,
see Chapter 5.
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3.3 Statistical Properties of Least Squares

(i) Unbiasedness

Given assumptions 1-4, it is easy to show that Bo g 1s unbiased for 3. In fact, using equation
(3.4) one can write

BOLS = Z?:l riyi/ Z?:l zf = Z?:l z;Y;/ Z?:l %2 =0+ Z?:l ziu;/ Z?:l xlz (3.5)

where the second equality follows from the fact that y; = ¥;—Y and Sy Y =Y Yo =0.
The third equality follows from substituting Y; from (3.1) and using the fact that )", z; = 0.
Taking expectations of both sides of (3.5) and using assumptions 1 and 4, one can show that
E(Borsg) = 8. Furthermore, one can derive the variance of g from (3.5) since

2 2 2 22

var(Bors) = E(Bors —B8)" = Bl wiui/ Y1, 77) (3.6)

2 2 2

= var(l wiw/ Y1 w7) =07/ X0
where the last equality uses assumptions 2 and 3, i.e., that the u;’s are not correlated with each
other and that their variance is constant, see problem 4. Note that the variance of the OLS
estimator of 5 depends upon o2, the variance of the disturbances in the true model, and on
the variation in X. The larger the variation in X the larger is > i ; 27 and the smaller is the

variance of Bprg-

(ii) Consistency

Next, we show that BO g is consistent for 5. A sufficient condition for consistency is that ﬁo LS
is unbiased and its variance tends to zero as n tends to infinity. We have already shown By,
to be unbiased, it remains to show that its variance tends to zero as n tends to infinity.

lim var(ﬁOLS) = hm [( 2/n)/ (i /n)] =0

n—oo

where the second equality follows from the fact that (o2/n) — 0 and (3.1, 2?/n) # 0 and has
a finite limit, see assumption 4. Hence, plim 60 s = B and 60 s is consistent for 3. Similarly
one can show that @ors is unbiased and consistent for o with variance o2 Y 1 | X2/n > " | a2,

and cov(Aors, Bors) = —X02/ Y1, 22, see problem 5.

(iii) Best Linear Unbiased

Using (3.5) one can write ﬁOLS as Yo, w;Y; where w; = x;/ > i, x2. This proves that BoLs
is a linear combination of the Y;’s, with weights w; satisfying the followmg properties:

Z?:l w; = 0; Z S wilX; = 152?:1 “%2 =1/ Z?:l 33:2 (3.7)
The next theorem shows that among all linear unbiased estimators of (3, it is BO g Which has
the smallest variance. This is known as the Gauss-Markov Theorem.

Theorem 1: Consider any arbitrary linear estimator 6 Yoy a;Y; for 8, where the a;’s denote
arbitrary constants. If 6 is unbiased for 3, and assumptions 1 to 4 are satisfied, then Var(ﬁ) >
var(Bors)-
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Proof: Substituting Y; from (3.1) into 3, one gets 3 = « Yo ai+BY " ai Xi+> " azu,. For 3
to be unbiased for 3 it must follow that E(3) = « Yo ai+BY 1 a;X; = [ for all observations
i=1,2,...,n. This means that > ;a; =0 and ) ;" ;a;X; =1 for all i = 1,2,...,n. Hence,
B=p+ Yo au; with var(3) = var(3o1, au;) = 0231, a? where the last equality follows
from assumptions 2 and 3. But the a;’s are constants which differ from the w;’s, the weights of
the OLS estimator, by some other constants, say d;’s, i.e., a; = w; +d; for i = 1,2,... ,n. Using
the properties of the a;’s and w; one can deduce similar properties on the d;’s i.e., Y ;" | d; =0
and )i | d; X; = 0. In fact,

> a; = die i + diet w; +2 >y wid;

where Y0 wid; = i 2;d;/ Y, 22 = 0. This follows from the definition of w; and the fact
that 0" d; = > d;X; = 0. Hence,

var(ﬁ) =0’ Z?:1 %2 =0’ Z?:1 dzz +0° Z?:1 wf = Var(BOLS) +0° Z?:l dzz

Since 02 3>, d? is non-negative, this proves that var(3) > var(8o.g) with the equality holding
only if d; = 0 for all i = 1,2,...,n, ie, only if a; = w;, in which case B reduces to @OLS.
Therefore, any linear estimator of (3, like § that is unbiased for 8 has variance at least as large
as V&Y(BO rs)- This proves that BO s is BLUE, Best among all Linear Unbiased Estimators of

B

Similarly, one can show that Qprg is linear in Y; and has the smallest variance among all
linear unbiased estimators of «, if assumptions 1 to 4 are satisfied, see problem 6. This result
implies that the OLS estimator of « is also BLUE.

3.4 Estimation of o2

The variance of the regression disturbances o2 is unknown and has to be estimated. In fact,

both the variance of BOLS and that of prs depend upon o2, see (3.6) and problem 5. An

unbiased estimator for o2 is s = Y _I' | e?/(n — 2). To prove this, we need the fact that

e; =Y; —aoLs — BorsXi = yi — BorsTi = (B — Bors)Ti + (u; — )

where @ = Y, u;/n. The second equality substitutes dors = Y — EOLSX' and the third
equality substitutes y; = fx; + (u; — @). Hence,

Sl = Bops — B Xy a? + X0y (wi — 0)? — 2(Bors — B) Yoy wi(u; — 1),
and

E(Z?:l 6?) = Z?:l vaar(ﬁOLS) +(n — 1)02 - QE(ZZ-L:;L xiui>2/ 2?21 3712
o2+ (n—1)o? - 20% = (n — 2)0?

where the first equality uses the fact that E(X.™(u; — @)2) = (n — 1)o? and Borg — f =

S wui/ 1, 22, The second equality uses the fact that var(Bozg) = 02/ 32", 22 and

EQL wui)? =0 Y0 @y,
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Therefore, E(s*) = E(}.", €?/(n —2)) = o2

Intuitively, the estimator of ¢ could be obtained from Y7, (u; — @)?/(n — 1) if the true
disturbances were known. Since the u’s are not known, consistent estimates of them are used.
These are the e;’s. Since Y1, e; = 0, our estimator of o2 becomes > I ; e?/(n — 1). Taking
expectations we find that the correct divisor ought to be (n—2) and not (n—1) for this estimator
to be unbiased for ¢2. This is plausible, since we have estimated two parameters o and § in
obtaining the e;’s, and there are only n — 2 independent pieces of information left in the data.
To prove this fact, consider the OLS normal equations given in (3.2) and (3.3). These equations
represent two relationships involving the e;’s. Therefore, knowing (n — 2) of the e;’s we can

deduce the remaining two e;’s from (3.2) and (3.3).

3.5 Maximum Likelihood Estimation

Assumption 5: The u;’s are independent and identically distributed N (0, o2).

This assumption allows us to derive distributions of estimators and other test statistics. In
fact using (3.5) one can easily see that BOLS is a linear combination of the w;’s. But, a linear
combination of normal random variables is itself a normal random variable, see Chapter 2,
problem 15. Hence, 50LS is N(B,0%/> ", 22). Similarly dors is N(a,0? Y0 | X2/n Y0 2?),
and Y; is N(a+BX;,0?). Moreover, we can write the joint probability density function of the u’s
as f(u1,ug, ... un;a, B,0%) = (1/2102)" 2exp(— 1, u?/20%). To get the likelihood function
we make the transformation u; = Y; — a— 8X; and note that the Jacobian of the transformation
is 1. Therefore,

f(Yl,YQ,...,Yn;oz,ﬁ,a )=(1/270 )"/zexp{ Yo (Yi—a— X)) /202} (3.8)

Taking the log of this likelihood, we get
logL(a, 3,0%) = —(n/2)log(2n0?) = Y1, (V; — a = 5X;)? /207 (3.9)

Maximizing this likelihood with respect to a, 3 and 2 one gets the maximum likelihood esti-
mators (MLE). However, only the second term in the log likelihood contains « and § and that
term (without the negative sign) has already been minimized with respect to o and (3 in (3.2)
and (3.3) giving us the OLS estimators. Hence, ayre = @ors and By p = Bors- Similarly,
by diﬁerentiating logL with respect to o2 and setting this derivative equal to zero one gets
GyiLE = Sor, €?/n, see problem 7. Note that this differs from s? only in the divisor. In fact,
E(G315) = (n —2)0%/n # o2. Hence, 647, is biased but note that it is still asymptotically
unbiased.

So far, the gains from imposing assumption 5 are the following: The likelihood can be formed,
maximum likelihood estimators can be derived, and distributions can be obtained for these
estimators. One can also derive the Cramér-Rao lower bound for unbiased estimators of the
parameters and show that the aprg and 50 g attain this bound whereas s? does not. This
derivation is postponed until Chapter 7. In fact, one can show following the theory of complete
sufﬁment statistics that aprs, 50 g and s? are minimum vamance unbiased estimators for «, 0
and o2, see Chapter 2. This is a stronger result (for @prs and 50 1g) than that obtained using
the Gauss Markov Theorem. It says, that among all unbiased estimators of o and 3, the OLS
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estimators are the best. In other words, our set of estimators include now all unbiased estimators
and not just linear unbiased estimators. This stronger result is obtained at the expense of a
stronger distributional assumption, i.e., normality. If the distribution of the disturbances is not
normal, then OLS is no longer MLE. In this case, MLE will be more efficient than OLS as
long as the distribution of the disturbances is correctly specified. Some of the advantages and
disadvantages of MLE were discussed in Chapter 2.

We found the distributions of aprg, ﬁOLS, now we give that of s2. In Chapter 7, it is shown
that Y ", < e?/o? is a chi-squared with (n — 2) degrees of freedom. Also, s? is independent of
aors and ﬁo r.s- This is useful for test of hypotheses. In fact, the major gain from assumption
5 is that we can perform test of hypotheses. N

Standardizing the normal random variable B¢ g, one gets z = (Bors — 3)/(02/ 2", 22)3 ~
N(0,1). Also, (n — 2)s?/0? is distributed as x2_,. Hence, one can divide 2z, a N(0,1) random
variable, by the square root of (n — 2)s2/0? divided by its degrees of freedom (n — 2) to
get a t-statistic with (n — 2) degrees of freedom. The resulting statistic is tops = (BOLS -

VIC DN )2 ~ tp_2, see problem 8. This statistic can be used to test Ho; 8 = (3, versus
Hy; B # By, Where B is a known constant. Under Hy, typs can be calculated and its value can be
compared to a critical value from a t-distribution with (n —2) degrees of freedom, at a specified
critical value of a%. Of specific interest is the hypothesis Hy; 8 = 0, which states that there is
no linear relationship between Y; and X;. Under Hy),

tovs = Bors/ (8% S0y %2)% = Bors/5e(Bors)

where SAe(BOLS) =(s*/301, xf)% If [tobs| > taja;n—2, then Hy is rejected at the a% significance
level. t, /2., Tepresents a critical value obtained from a ¢-distribution with n — 2 degrees of
freedom. It is determined such that the area to its right under a ¢,_5 distribution is equal to
a/2.

Similarly one can get a confidence interval for 5 by using the fact that, Pr[—t, J2in—2 < lobs <
ta/2m—2] = 1 — a and substituting for ¢, its value derived above as (BOLS - 6)/872(30L5).

Since the critical values are known, BO g and sAe(BO 1g) can be calculated from the data, the
following (1 — @)% confidence interval for 3 emerges

Bors T tajzn—25¢(Bors)-

Tests of hypotheses and confidence intervals on a and o2 can be similarly constructed using the
normal distribution of Aprs and the x2_, distribution of (n — 2)s?/02.

3.6 A Measure of Fit

We have obtained the least squares estimates of a, § and o2 and found their distributions
under normality of the disturbances. We have also learned how to test hypotheses regarding
these parameters. Now we turn to a measure of fit for this estimated regression line. Recall, that

=Y, — Y where Y denotes the predicted Y; from the least squares regression line at the value
XZ, ie., dors + BOLSX Using the fact that Y ;" | e; = 0, we deduce that Y ;" | V; =>"" 1YZ7

and therefore, Y = Y. The actual and predicted values of Y have the same sample mean, see
numerical properties (i) and (iii) of the OLS estimators discussed in section 2. This is true
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as long as there is a constant in the regression. Adding and subtracting Y from e;, we get
€ = Yi — Yi, O Y; = €; + ;. Squaring and summing both sides:

S Y= Y U 23 el = Y€+ Ur (3.10)

where the last equality follows from the fact that y; = BO rsxi and > " e;x; = 0. In fact,

D1 €l = )iy ei?i =0

means that the OLS residuals are uncorrelated with the predicted values from the regression,
see numerical properties (ii) and (iv) of the OLS estimates discussed in section 3.2. In other
words, (3.10) says that the total variation in Y;, around its sample mean Y i.e., Y1 | yZ, can be

decomposed into two parts: the first is the regression sums of squares Y ;" @Z = ﬁo LS 2ot &
and the second is the residual sums of squares » ;" ;e Z In fact, regressing Y on a constant
yields @pors = Y, see problem 2, and the unexplained residual sums of squares of this naive
model is

Z?:l(}/i - &OLS)Q = Z?:l(yi - Y)Q = Z?:l ?/12

Therefore, > 7" | 7?7 in (3.10) gives the explanatory power of X after the constant is fit.

Using this decomposition, one can define the explanatory power of the regression as the
ratio of the regression sums of squares to the total sums of squares. In other words, define
R? = Z? 192/ 50 y? and this value is clearly between 0 and 1. In fact, dividing (3.10) by
S y? one gets R2 =150 1€2/5"  y2 The Y1 | e? is a measure of misfit which was
minimized by least squares. If " , 62 is large, this means that the regression is not explaining
a lot of the variation in Y and hence, the R? value would be small. Alternatively, if the >, e?
is small, then the fit is good and R? is large. In fact, for a perfect ﬁt where all the observations
lie on the fitted line, ¥; = ¥; and e; = 0, which means that ZZ 12 =0 and R? = 1. The other
extreme case is where the regression sums of squares >\ | ¥, yz = 0. In other Words the linear
regression explains nothing of the variation in Y;. In this case, >, y? = Yo e 2 and R? = 0.
Note that since » ", yl = 0 implies 7; = 0 for every 7, which in turn means that Y Y for
every i. The fitted regression line is a horizontal line drawn at Y = Y, and the independent
variable X does not have any explanatory power in a linear relationship with Y.

Note that R? has two alternative meanings: (i) It is the simple squared correlation coefficient
between Y; and iA/i, see problem 9. Also, for the simple regression case, (ii) it is the simple
squared correlation between X and Y. This means that before one runs the regression of ¥ on
X, one can compute Tgy which in turn tells us the proportion of the variation in Y that will
be explained by X. If this number is pretty low, we have a weak linear relationship between Y
and X and we know that a poor fit will result if YV is regressed on X. It is worth emphasizing
that R? is a measure of linear association between Y and X. There could exist, for example, a
perfect quadratic relationship between X and Y, yet the estimated least squares line through
the data is a flat line implying that B2 = 0, see problem 3 of Chapter 2. One should also be
suspicious of least squares regressions with R? that are too close to 1. In some cases, we may
not want to include a constant in the regression. In such cases, one should use an uncentered
R? as a measure fit. The appendix to this chapter defines both centered and uncentered R? and
explains the difference between them.
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3.7 Prediction

Let us now predict Yy given Xy. Usually this is done for a time series regression, where the
researcher is interested in predicting the future, say one period ahead. This new observation Y
is generated by (3.1), i.e.,

Yo = a+ 8Xo + uo (3.11)

What is the Best Linear Unbiased Predictor (BLUP) of E(Yp)? From (3.11), E(Yp) = a + X0
is a linear combination of o and . Using the Gauss-Markov result, Yo = aors + BorgXo is
BLUE for a+ (3X( and the variance of this predictor of E(Yp) is o2[(1/n)+(Xo—X)?/ > 1, 7],
see problem 10. But, what if we are interested in the BLUP for Yj itself ? Yj differs from E(Yp)
by ug, and the best predictor of ug is zero, so the BLUP for Yj is still 370. The forecast error is

Yo — Yo = [Yo — E(Yo)] + [B(Yo) — Yo] = uo + [E(Yp) — Yo

where ug is the error committed even if the true regression line is known, and E(Yp) — }70 is
the difference between the sample and population regression lines. Hence, the variance of the
forecast error becomes:

var(uo) + var[E(Yp) — Yo + 2cov(ug, E(Yp) — Yo = o*[1 + (1/n) + (Xo — X)?/ 31, 23]

This says that the variance of the forecast error is equal to the variance of the predictor of
E(Yp) plus the var(ug) plus twice the covariance of the predictor of E(Y)) and ug. But, this last
covariance is zero, since ug is a new disturbance and is not correlated with the disturbances in the
sample upon which }A/Z is based. Therefore, the predictor of the average consumption of a $20, 000
income household is the same as the predictor of consumption for a specific household whose
income is $20,000. The difference is not in the predictor itself but in the variance attached
to it. The latter variance being larger only by o2, the variance of ug. The variance of the
predictor therefore, depends upon o2, the sample size, the variation in the X’s, and how far X
is from the sample mean of the observed data. To summarize, the smaller ¢ is, the larger n
and >, xf are, and the closer Xj is to X, the smaller is the variance of the predictor. One
can construct 95% confidence intervals to these predictions for every value of Xj. In fact, this
is (QoLs + BorsXo) & tozsm—2{s[l + (1/n) + (Xo — X)?/ 3", 2?]2} where s replaces o, and
t.025:n—2 represents the 2.5% critical value obtained from a ¢-distribution with n — 2 degrees of
freedom. Figure 3.5 shows this confidence band around the estimated regression line. This is a
hyperbola which is the narrowest at X as expected, and widens as we predict away from X.

3.8 Residual Analysis

A plot of the residuals of the regression is very important. The residuals are consistent estimates
of the true disturbances. But unlike the w;’s, these e;’s are not independent. In fact, the OLS
normal equations (3.2)and (3.3) give us two relationships between these residuals. Therefore,
knowing (n — 2) of these residuals the remaining two residuals can be deduced. If we had the
true u;’s, and we plotted them, they should look like a random scatter around the horizontal
axis with no specific pattern to them. A plot of the e;’s that shows a certain pattern like a set
of positive residuals followed by a set of negative residuals as shown in Figure 3.6(a) may be
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Figure 3.5 95% Confidence Bands

indicative of a violation of one of the 5 assumptions imposed on the model, or simply indicating
a wrong functional form. For example, if assumption 3 is violated, so that the w;’s are say
positively correlated, then it is likely to have a positive residual followed by a positive one, and
a negative residual followed by a negative one, as observed in Figure 3.6(b). Alternatively, if
we fit a linear regression line to a true quadratic relation between Y and X, then a scatter
of residuals like that in Figure 3.6(c) will be generated. We will study how to deal with this
violation and how to test for it in Chapter 5.

Large residuals are indicative of bad predictions in the sample. A large residual could be
a typo, where the researcher entered this observation wrongly. Alternatively, it could be an
influential observation, or an outlier which behaves differently from the other data points in
the sample and therefore, is further away from the estimated regression line than the other
data points. The fact that OLS minimizes the sum of squares of these residuals means that a
large weight is put on this observation and hence it is influential. In other words, removing this
observation from the sample may change the estimates and the regression line significantly. For
more on the study of influential observations, see Belsely, Kuh and Welsch (1980). We will focus
on this issue in Chapter 8 of this book.
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Figure 3.6 Positively Correlated Residuals
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Figure 3.7 Residual Variation Growing with X

One can also plot the residuals versus the X;’s. If a pattern like Figure 3.7 emerges, this could be
indicative of a violation of assumption 2 because the variation of the residuals is growing with
X; when it should be constant for all observations. Alternatively, it could imply a relationship
between the X;’s and the true disturbances which is a violation of assumption 4.

In summary, one should always plot the residuals to check the data, identify influential obser-
vations, and check violations of the 5 assumptions underlying the regression model. In the next
few chapters, we will study various tests of the violation of the classical assumptions. Most of
these tests are based on the residuals of the model. These tests along with residual plots should
help the researcher gauge the adequacy of his or her model.

Table 3.1 Simple Regression Computations

OBS Consumption | Income y=Y—Y | 2=X-X o 22 Y, e
1 4.6 5 -1.9 2.5 4.75 6.25 4.476190 0.123810
2 3.6 4 -2.9 -3.5 10.15 | 12.25 3.666667 | —0.066667
3 4.6 6 -1.9 -1.5 2.85 2.25 5.285714 | —0.685714
4 6.6 8 0.1 0.5 0.05 0.25 6.904762 | -0.304762
5 7.6 8 1.1 0.5 0.55 0.25 6.904762 0.695238
6 5.6 7 -0.9 0.5 0.45 0.25 6.095238 | —0.495238
7 5.6 6 -0.9 -1.5 1.35 2.25 5.285714 0.314286
8 8.6 9 2.1 1.5 3.15 2.25 7.714286 0.885714
9 8.6 10 2.1 2.5 5.25 6.25 8.523810 0.076190
10 9.6 12 3.1 4.5 13.95 | 20.25 | 10.142857 | —0.542857

SUM 6.5 75 0 0 42.5 52.5 65 0

MEAN 6.5 7.5 6.5
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3.9 Numerical Example

Table 3.1 gives the annual consumption of 10 households each selected randomly from a group of
households with a fixed personal disposable income. Both income and consumption are measured
in $10,000, so that the first household earns $50,000 and consumes $46,000 annually. It is
worthwhile doing the computations necessary to obtain the least squares regression estimates
of consumption on income in this simple case and to compare them with those obtained from
a regression package. In order to do this, we first compute Y = 6.5 and X = 7.5 and form two
new columns of data made up of y; = Y; — Y and z; = X; — X. To get BOLS we need > iy,
so we multiply these last two columns by each other and sum to get 42.5. The denominator of
Bors is given by >°I | 22, This is why we square the z; column to get z? and sum to obtain
52.5. Our estimate of BOLS = 42.5/52.5 = 0.8095 which is the estimated marginal propensity to
consume. This is the extra consumption brought about by an extra dollar of disposable income.

doLs =Y — BopsX = 6.5 — (0.8095)(7.5) = 0.4286

This is the estimated consumption at zero personal disposable income. The fitted values or
predicted values from this regression are computed from EA/; = aors + BorsXi = 0.4286 +
0.8095X; and are given in Table 3.1. Note that the mean of }A’Z is equal to the mean of Y;
confirming one of the numerical properties of least squares. The residuals are computed from
e; = Y; — Y; and they satisfy Yo e = 0. It is left to the reader to verify that > ; e;X; = 0.
The residual sum of squares is obtained by bquaring the column of residuals and summing it.
This gives us Y ;- e? = 2.495238. This means that s = =€ 2/(n—2) = 0.311905. Its square

root is given by s = 0.558. This is known as the standard error of the regression. In this case,
the estimated var(Bopg) is s?/ > 1, 7 = 0.311905/52.5 = 0.005941 and the estimated

1 X2 1 (7.5)?
—~ 2
=2 |= 4+ = | =0.311905 = 0.365374
var(@) = s [n T } [10 52.5 ]

Taklng the square root of these estimated variances, we get the estimated standard errors of
aors and ﬁOLS given by se(a@ors) = 0.60446 and se(BOLS) = 0.077078.

Since the disturbances are normal, the OLS estimators are also the maximum likelihood
estimators, and are normally distributed themselves. For the null hypothesis Hg; 3 = 0; the
observed t-statistic is

tors = (Bors — 0)/5e(BoLs) = 0.809524/0.077078 = 10.50

and this is highly significant, since Pr[|tg| > 10.5] < 0.0001. This probability can be obtained
using most regression packages. It is also known as the p-value or probability value. It shows
that this ¢-value is highly unlikely and we reject Hf that § = 0. Similarly, the null hypothesis
Hg; a = 0, gives an observed t-statistic of ¢, = (Q@ors — 0)/se(aors) = 0.428571/0.604462 =
0.709, which is not significant, since its p-value is Pr[[ts| > 0.709] < 0.498. Hence, we do not
reject the null hypothesis H(l)’ that a = 0.

The total sum of squares is > i, y? = > i, (Y; —Y)? which can be obtained by squaring the
y; column in Table 3.1 and summing. This yields Y1 | y? = 36.9. Also, the regression sum of

squares = Y | 72 = 27:1(17; —Y)? which can be obtained by subtracting Y = Y = 6.5 from
the Y; column, squaring that column and summing. This yields 34.404762. This could have also
been obtained as
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~2
S0 = Bons Sor, w2 = (0.809524)2 (52.5) = 34.404762.

A final check is that 3> 72 = 32" 92 — 327, €2 = 36.9 — 2.495238 = 34.404762 as required.

i=1"1
Recall, that R* = 72, = (31 zayi)®/ (X imy 27)(Ximy v7) = (42.5)/(52.5)(36.9) = 0.9324.
This could have also been obtained as R? = 1 — (3.1, />0 y?) = 1 — (2.495238/36.9) =
0.9324, or as

R*=r}y =30 07/ Y0 yi = 34.404762/36.9 = 0.9324.

This means that personal disposable income explains 93.24% of the variation in consumption.
A plot of the actual, predicted and residual values versus time is given in Figure 3.8. This was
done using EViews.
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Figure 3.8 Residual Plot

3.10 Empirical Example

Table 3.2 gives (i) the logarithm of cigarette consumption (in packs) per person of smoking age
(> 16 years) for 46 states in 1992, (ii) the logarithm of real price of cigarettes in each state,
and (iii) the logarithm of real disposable income per capita in each state. This is drawn from
Baltagi and Levin (1992) study on dynamic demand for cigarettes. It can be downloaded as
Cigarett.dat from the Springer web site.



Table 3.2 Cigarette Consumption Data

3.10

Empirical Example

LNC: log of consumption (in packs) per person of smoking age (>16)

LNP: log of real price (1983$/pack)

LNY: log of real disposable income per-capita (in thousand 1983$)

OBS STATE LNC LNP LNY
1 AL 4.96213 0.20487 4.64039
2 AZ 4.66312 0.16640 4.68389
3 AR 5.10709 0.23406 4.59435
4 CA 4.50449 0.36399 4.88147
5 CcT 4.66983 0.32149 5.09472
6 DE 5.04705 0.21929 4.87087
7 DC 4.65637 0.28946 5.05960
8 FL 4.80081 0.28733 4.81155
9 GA 4.97974 0.12826 4.73299

10 ID 4.74902 0.17541 4.64307
11 IL 4.81445 0.24806 4.90387
12 IN 5.11129 0.08992 4.72916
13 IA 4.80857 0.24081 4.74211
14 KS 4.79263 0.21642 4.79613
15 KY 5.37906 -0.03260 4.64937
16 LA 4.98602 0.23856 4.61461
17 ME 4.98722 0.29106 4.75501
18 MD 4.77751 0.12575 4.94692
19 MA 4.73877 0.22613 4.99998
20 MI 4.94744 0.23067 4.80620
21 MN 4.69589 0.34297 4.81207
22 MS 4.93990 0.13638 4.52938
23 MO 5.06430 0.08731 4.78189
24 MT 4.73313 0.15303 4.70417
25 NE 4.77558 0.18907 4.79671
26 NV 4.96642 0.32304 4.83816
27 NH 5.10990 0.15852 5.00319
28 NJ 4.70633 0.30901 5.10268
29 NM 4.58107 0.16458 4.58202
30 NY 4.66496 0.34701 4.96075
31 ND 4.58237 0.18197 4.69163
32 OH 4.97952 0.12889 4.75875
33 OK 4.72720 0.19554 4.62730
34 PA 4.80363 0.22784 4.83516
35 RI 4.84693 0.30324 4.84670
36 SC 5.07801 0.07944 4.62549
37 SD 4.81545 0.13139 4.67747
38 TN 5.04939 0.15547 4.72525
39 TX 4.65398 0.28196 4.73437
40 uT 4.40859 0.19260 4.55586
41 VT 5.08799 0.18018 4.77578
42 VA 4.93063 0.11818 4.85490
43 WA 4.66134 0.35053 4.85645
44 WV 4.82454 0.12008 4.56859
45 WI 4.83026 0.22954 4.75826
46 WY 5.00087 0.10029 4.71169

Data: Cigarette Consumption of 46 States in 1992

65
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Table 3.3 Cigarette Consumption Regression

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob > F
Model 1 0.48048 0.48048 18.084 0.0001
Error 44 1.16905 0.02657
Root MSE 0.16300 R-square 0.2913
Dep Mean 4.84784 Adj R-sq 0.2752
C.V. 3.36234

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T
INTERCEP 1 5.094108 0.06269897 81.247 0.0001
LNP 1 -1.198316 0.28178857 —-4.253 0.0001
4
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Log of Real Price (1983$/Pack)
Figure 3.9 Residuals versus LNP

Table 3.3 gives the SAS output for the regression of logC on logP. The price elasticity of
demand for cigarettes in this simple model is (dlogC'/logP) which is the slope coefficient. This
is estimated to be —1.198 with a standard error of 0.282. This says that a 10% increase in real
price of cigarettes has an estimated 12% drop in per capita consumption of cigarettes. The R?
of this regression is 0.29, s? is given by the Mean Square Error of the regression which is 0.0266.
Figure 3.9 plots the residuals of this regression versus the independent variable, while Figure
3.10 plots the predictions along with the 95% confidence interval band for these predictions.
One observation clearly stands out as an influential observation given its distance from the
rest of the data and that is the observation for Kentucky, a producer state with very low real
price. This observation almost anchors the straight line fit through the data. More on influential
observations in Chapter 8.
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Figure 3.10 95% Confidence Band for Predicted Values

Problems

. For the simple regression with a constant ¥; = o + SX; + u,, given in equation (3.1) verify the
following numerical properties of the OLS estimators:

21161 Ozllel i—OZz 1ezi—ozz 1Y Zz 1Yi

. For the regression with only a constant Y; = a + u; with u; ~ IID(0,0?), show that the least
squares estimate of @ is dors = Y, var(Gors) = 0%/n, and the residual sums of squares is

Syl =2, (i Y)
. For the simple regression without a constant Y; = 8X; + u;, with u; ~ IID(0, 02).

(a) Derive the OLS estimator of § and find its variance.

(b) What numerical properties of the OLS estimators described in problem 1 still hold for this
model?

(¢) derive the maximum likelihood estimator of 3 and o2 under the assumption u; ~ IIN(0, o%).
(d) Assume o2 is known. Derive the Wald, LM and LR tests for Ho; 8 = 1 versus Hy; 3 # 1.

. Use the fact that E(> -, zju;)? = Y1 1 2j—y i E(usuy); and assumptions 2 and 3 to prove
equation (3.6).

. Using the regression given in equation (3.1):

(a) Show that aprs = a+ (5 — EOLS))_( + @; and deduce that E(dors) = a.

(b) Using the fact that B g — B => 1 wiui/ Y i, x7; use the results in part (a) to show that
var(Gors) = o?[(1/n) + (X?/ 320, @7)] = 02 3000 X7 /n 30, af.

(c) Show that @ors is consistent for .

(d) Show that COV(aOL&BOLs) Xvar(BOLS) —0?X /> i, x7. This means that the sign

of the covariance is determined by the sign of X. If X is posmve this covariance will be
negative. This also means that if @pps is over-estimated, ﬁo s will be under-estimated.
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6.

10.

11.
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Using the regression given in equation (3.1):

(a) Prove that @ors = > iy AY; where \; = (1/n) — Xw; and w; = z;/ > i, z2.
(b) Show that > ; A\, =1and > 1 AX; =0.

(c) Prove that any other linear estimator of a, say & = Y ; b;¥; must satisfy > ., b; = 1 and
S 1 b X; =0 for & to be unbiased for a.

Let b; = A; + fi; show that > | fy =0and >_I; fiX; = 0.
Prove that var(@) = 0231 b2 = 02 31 A + 02 30| f? =var(Aors) + o2 Y, f7.

(d
(e
(a
(b

It is well known that a standard normal random variable N (0, 1) divided by a square root of a chi-

Differentiate (3.9) with respect to o and  and show that ay g = @ors, ﬁMLE = BOLS.

)
)
)
) Differentiate (3.9) with respect to o2 and show that 3,, 5 = S e?/n.

squared random variable divided by its degrees of freedom (x2/v)? results in a random variable
that is t-distributed with v degrees of freedom, provided the N(0,1) and the X variables are
independent, see Chapter 2. Use this fact to show that (Bors — 0)/[s/ (30—, 22)2] ~ ty_o.

(a) Using the fact that R =370, 07/ 25, i 0 = Borswis and Bors = 2oimy @Y/ 2oimy T35

show that R? =12 , where,
1oy = (i i)/ (i #3) (i, vi)-

(b) Using the fact that y; = Ui + e;, show that Y ., Giyi = >y U7, and hence, deduce that

rog = (i i)/ (i, yi) (322, 97) is equal to R?.
Prediction. Consider the problem of predicting Yy from (3.11). Given Xj,

(a) Show that E(Yp) = a + 5X.

(b) Show that Y, is unbiased for E(Yp).

(¢) Show that var(Yy) = var(ao,;s) +ngar(EOLS)+2X0cov(a0Lg, EOLS). Deduce that var(Yp)

=o?[(1/n) + (Xo — X)?/ 321, #3).

(d) Consider a linear predictor of E(Yp), say Yy = S, a;Yi, show that > ja; = 1 and
>, a;X; = X for this predictor to be unbiased for E(YO)

(¢) Show that the var(Yp) = 02y 0, a?. Minimize Y1 | a2 subJect to the restrictions given
in (d). Prove that the resultlng predictor is YO = aorLs + ﬁo sXo and that the minimum
variance is o2[(1/n) + (Xo — X)?/ >0, 22].

Optimal Weighting of Unbiased Estimators. This is based on Baltagi (1995). For the simple re-
gression without a constant Y; = 8X; +wu;,7 = 1,2,..., N; where 3 is a scalar and u; ~ IID(0, 0%)
independent of X;. Consider the following three unbiased estimators of 3:

31 = Z?:l XiYi/ Z?:l XiQa Bz = Y/X
and
B3 = ZZ‘L=1(X1’ - X)(Yi - Y)/Z?=1(Xi - X)2,
where X = >0 | X;/nand Y =Y | Yi/n.
(a) Show that COV(B17 Bz) = var(@l) > 0, and that p,;5 = (the correlation coeflicient of Bl and
Bs) = [var(ﬁl)/var(ﬁz)}% with 0 < p;5 < 1. Show that the optimal combination of §; and

B4, given by 8 = af; + (1 — a)f, where —oco < a < 0o occurs at o* = 1. Optimality here
refers to minimizing the variance. Hint: Read the paper by Samuel-Cahn (1994).
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(b) Similarly, show that cov(Bl,ﬁg) = Var(Bl) > 0, and that p;5 = (the correlation coefficient of

[Ail and Bg) = [Var(ﬁl)/var(gg))]% = (1 —p2%,)? with 0 < p,53 < 1. Conclude that the optimal
combination El and 33 is again o* = 1.

(¢) Show that COV(BQ, Bg) = 0 and that optimal combination of @2 and B3 is B = (1- p%z)@3 +

pfz@ = Bl. This exercise demonstrates a more general result, namely that the BLUE of

[ in this case Bl, has a positive correlation with any other linear unbiased estimator of 3,

and that this correlation can be easily computed from the ratio of the variances of these two

estimators.
12. Efficiency as Correlation. This is based on Oksanen (1993). Let B denote the Best Linear Unbiased
Estimator of 8 and let 5 denote any linear unbiased estimator of 3. Show that the relative efficiency

of 6 with respect to ﬂ is the squared correlation coefficient between ﬁ and ﬂ Hint: Compute the
variance of ﬂ + )\(ﬂ [3) for any A. This variance is minimized at A = 0 since B is BLUE. This

~2
should give you the result that E(8 ) = (ﬁﬁ) which in turn proves the required result, see Zheng
(1994).

13. For the numerical illustration given in section 3.9, what happens to the least squares regression
coefficient estimates (QoLs, BoLg), 52, the estimated se(@ors) and se(By;g), t-statistic for Aors
and Bppg for Hf;a =0, and Hg;ﬂ =0 and R? when:

(a) Y; is regressed on X; + 5 rather than X;. In other words, we add a constant 5 to each
observation of the explanatory variable X; and rerun the regression. It is very instructive to
see how the computations in Table 3.1 are affected by this simple transformation on Xj;.

(b) Y; + 2 is regressed on X;. In other words, a constant 2 is added to Y;.
(c) Y; is regressed on 2X;. (A constant 2 is multiplied by X;).

14. For the cigarette consumption data given in Table 3.2.
(a) Give the descriptive statistics for logC, logP and logY . Plot their histogram. Also, plot logC

versus logY and logC' versus logP. Obtain the correlation matrix of these variables.

(b) Run the regression of logC on logY. What is the income elasticity estimate? What is its
standard error? Test the null hypothesis that this elasticity is zero. What is the s and R? of
this regression?

(c) Show that the square of the simple correlation coefficient between logC' and logY” is equal to
R2. Show that the square of the correlation coefficient between the fitted and actual values
of logC' is also equal to R2.

(d) Plot the residuals versus income. Also, plot the fitted values along with their 95% confidence
band.
15. Consider the simple regression with no constant: Y; = 6X; +u; i=1,2,...,n
where u; ~ IID(0, 02) independent of X;. Theil (1971) showed that among all linear estimators in
Y;, the minimum mean square estimator for 3, i.e., that which minimizes F(3 — 3)2 is given by

B=/Yr, XY/ (B2, X2 +02).

(a) Show that E(8) = 8/(1+ c), where ¢ = 02/4> 37, X2 > 0.

(b) Conclude that the Bias (3) = E(3) — 8 = —[c/(1 + ¢)]B. Note that this bias is positive
(negative) when § is negative (positive). This also means that [ is biased towards zero.

(¢) Show thatAMSE(E) —E(B-p)%= o2/ XZ + (02/3%)]. Conclude that it is smaller than
the MSE(Bors)-
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Table 3.4 Energy Data for 20 countries

RGDP EN
Country (in 10° 1975 U.S.$’s) 10° Kilograms Coal Equivalents
Malta 1251 456
Iceland 1331 1124
Cyprus 2003 1211
Ireland 11788 11053
norway 27914 26086
Finland 28388 26405
Portugal 30642 12080
Denmark 34540 27049
Greece 38039 20119
Switzerland 42238 23234
Austria 45451 30633
Sweden 59350 45132
Belgium 62049 58894
Netherlands 82804 84416
Turkey 91946 32619
Spain 159602 88148
Ttaly 265863 192453
U.K. 279191 268056
France 358675 233907
W. Germany 428888 352677

16. Table 3.4 gives cross-section Data for 1980 on real gross domestic product (RGDP) and aggregate
energy consumption (EN) for 20 countries

(a) Enter the data and provide descriptive statistics. Plot the histograms for RGDP and EN.
Plot EN versus RGDP.

(b) Estimate the regression:

log(En) = a + flog(RGDP) + u.

Be sure to plot the residuals. What do they show?

(¢) Test Hyp; 8 =1.

(d) One of your Energy data observations has a misplaced decimal. Multiply it by 1000. Now
repeat parts (a), (b) and (c).

(e) Was there any reason for ordering the data from the lowest to highest energy consumption?
Explain.

Lesson Learned: Always plot the residuals. Always check your data very carefully.

17. Using the Energy Data given in Table 3.4, corrected as in problem 16 part (d), is it legitimate to
reverse the form of the equation?

log(RDGP) =~y + dlog(En) + ¢

(a) Economically, does this change the interpretation of the equation? Explain.

(b) Estimate this equation and compare R? of this equation with that of the previous problem.
Also, check if 6 = 1/8. Why are they different?
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(c) Statistically, by reversing the equation, which assumptions do we violate?
(d) Show that 63 = R2.
(e) Effects of changing units in which variables are measured. Suppose you measured energy in

BTU’s instead of kilograms of coal equivalents so that the original series was multiplied by
60. How does it change o and [ in the following equations?

log(En) = a + Blog(RDGP)+u En=a*+ "RGDP +v

Can you explain why a changed, but not B for the log-log model, whereas both a*and
B changed for the linear model?

(f) For the log-log specification and the linear specification, compare the GDP elasticity for
Malta and W. Germany. Are both equally plausible?

(g) Plot the residuals from both linear and log-log models. What do you observe?
(h) Can you compare the R? and standard errors from both models in part (g)? Hint: Retrieve

log(En) and lz;g(En) in the log-log equation, exponentiate, then compute the residuals and
s. These are comparable to those obtained from the linear model.

18. For the model considered in problem 16: log(En) = a + Slog(RGDP) + u and measuring energy
in BTU’s (like part (e) of problem 17).

(a) What is the 95% confidence prediction interval at the sample mean?
(b) What is the 95% confidence prediction interval for Malta?
(c) What is the 95% confidence prediction interval for West Germany?
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Appendix
Centered and Uncentered R?

From the OLS regression on (3.1) we get

Yi=Yi+e i=1,2,...,n (A.1)
where 371 =aors + XiEOLS“ Squaring and summing the above equation we get

S Y=L+ T e (A2)
since > 4 ﬁei = 0. The uncentered R? is given by

uncentered B2 = 1— Y0, ¢/ Y0 Y2 = Y0, 2/ 5, V2 (A3)

Note that the total sum of squares for Y; is not expressed in deviation from the sample mean Y.
In other words, the uncentered R? is the proportion of variation of Yoy Y2 that is explained
by the regression on X. Regression packages usually report the centered R? which was defined
in section 3.6 as 1 — (31 ;e?/> " y?) where y; = Y; — Y. The latter measure focuses on
explaining the variation in Y; after fitting the constant.

From section 3.6, we have seen that a naive model with only a constant in it gives Y as the
estimate of the constant, see also problem 2. The variation in Y; that is not explained by this

naive model is > y? = "1, (V; — Y)?. Subtracting nY? from both sides of (A.2) we get

Sy = Y- nY? 4 Y el

and the centered R? is
centered T2 = 1 — (S0, €2/ 0, ) = (S0, T2 — n¥)/ S0, o2 (A.4)

If there is a constant in the model ¥ = ¥, see section 3.6, and 3.7 52 = Y1 (V; — V)2 =
S Y2 — nY?2. Therefore, the centered R2 = - 52/ 5" | 42 which is the R? reported by
regression packages. If there is no constant in the model, some regression packages give you the
option of (no constant) and the R? reported is usually the uncentered R2. Check your regression
package documentation to verify what you are getting. We will encounter uncentered R? again
in constructing test statistics using regressions, see for example Chapter 11.



CHAPTER 4
Multiple Regression Analysis

4.1 Introduction

So far we have considered only one regressor X besides the constant in the regression equation.
Economic relationships usually include more than one regressor. For example, a demand equa-
tion for a product will usually include real price of that product in addition to real income as
well as real price of a competitive product and the advertising expenditures on this product. In
this case

Y; :Oé-l—ﬁQXQZ‘+53X3i+..+ﬂKXKi+ui 1=1,2,...,n (41)

where Y; denotes the i-th observation on the dependent variable Y, in this case the sales of
this product. Xj; denotes the i-th observation on the independent variable X for k =2,..., K
in this case, own price, the competitor’s price and advertising expenditures. « is the intercept

and (B9, B, ..., are the (K — 1) slope coefficients. The w;’s satisfy the classical assumptions
1-4 given in Chapter 3. Assumption 4 is modified to include all the X’s appearing in the
regression, i.e., every X for k = 2,..., K, is uncorrelated with the u;’s with the property that

S (Xki — Xi)?/n where Xj, = Y. | Xj;/n has a finite probability limit which is different
from zero.

Section 4.2 derives the OLS normal equations of this multiple regression model and discovers
that an additional assumption is needed for these equations to yield a unique solution.

4.2 Least Squares Estimation

As explained in Chapter 3, least squares minimizes the residual sum of squares where the
residuals are now given by ¢; = Y; — a — Zszz 0, Xk; and a and (3, denote guesses on the
regression parameters a and [, respectively. The residual sum of squares

RSS =31 €2 =" (Y — @ — ByXoi — .. — B Xki)?

is minimized by the following K first-order conditions:

O iy €))/0a =231 1ei=0

~

O 1 €))0B, =231 eiXpi =0, for k=2,..., K. (4.2)

i=1%i
or, equivalently
Yo Y;=an+ Bz Doy Xoi+ .+ BK i X
S YiXoi =AY 1y Xoi+ 8o Yy X5+ 4 Bre Yoy Xoi Xk (4.3)

Z?:l YiXki=a Z?:l Xki + B2 Z?:1 Xoi X+ .. + BK Z?:l X%(i
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where the first equation multiplies the regression equation by the constant and sums, the second
equation multiplies the regression equation by Xs and sums, and the K-th equation multiplies
the regression equation by X and sums. > ju; = 0 and > u; Xp; =0 for b =2,..., K
are implicitly imposed to arrive at (4.3). Solving these K equations in K unknowns, we get the
OLS estimators. This can be done more succinctly in matrix form, see Chapter 7. Assumptions
1-4 insure that the OLS estimator is BLUE. Assumption 5 introduces normality and as a result
the OLS estimator is also (i) a maximum likelihood estimator, (ii) it is normally distributed,
and (iii) it is minimum variance unbiased. Normality also allows test of hypotheses. Without
the normality assumption, one has to appeal to the Central Limit Theorem and the fact that
the sample is large to perform hypotheses testing.

In order to make sure we can solve for the OLS estimators in (4.3) we need to impose one
further assumption on the model besides those considered in Chapter 3.

Assumption 6: No perfect multicollinearity, i.e., the explanatory variables are not perfectly
correlated with each other. This assumption states that, no explanatory variable X, for k =
2,...,K is a perfect linear combination of the other X’s. If assumption 6 is violated, then
one of the equations in (4.2) or (4.3) becomes redundant and we would have K — 1 linearly
independent equations in K unknowns. This means that we cannot solve uniquely for the OLS
estimators of the K coefficients.

Example 1: If Xy, = 3Xy; — 2X5;, + X7; for i = 1,...,n, then multiplying this relationship by
e; and summing over ¢ we get

Yoy Xoiei =330 Xuge; — 2 i 1 Xsiei + » iy X7i€i.

This means that the second OLS normal equation in (4.2) can be represented as a perfect linear
combination of the fourth, fifth and seventh OLS normal equations. Knowing the latter three
equations, the second equation adds no new information. Alternatively, one could substitute
this relationship in the original regression equation (4.1). After some algebra, X5 would be
eliminated and the resulting equation becomes:

Yi = a+ B3Xs + 30y + B4)Xui + (85 — 2082) X5i + B Xei + (B2 + 87) X7 (4.4)
+o. 4+ Br XK + i

Note that the coefficients of X4, X5; and X7; are now (385 + 54), (85 — 20,) and (8, + 57),
respectively. All of which are contaminated by 3,. These linear combinations of 35, 84, 85 and
(3~ can be estimated from regression (4.4) which excludes Xy;. In fact, the other X’s, not con-
taminated by this perfect linear relationship, will have coefficients that are not contaminated
by B9 and hence are themselves estimable using OLS. However, 3,, 34, 85 and (3, cannot be
estimated separately. Perfect multicollinearity means that we cannot separate the influence on
Y of the independent variables that are perfectly related. Hence, assumption 6 of no perfect
multicollinearity is needed to guarantee a unique solution of the OLS normal equations. Note
that it applies to perfect linear relationships and does not apply to perfect non-linear relation-
ships among the independent variables. In other words, one can include X7; and X 12i like (years
of experience) and (years of experience)? in an equation explaining earnings of individuals. Al-
though, there is a perfect quadratic relationship between these independent variables, this is
not a perfect linear relationship and therefore, does not cause perfect multicollinearity.
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4.3 Residual Interpretation of Multiple Regression Estimates

Although we did not derive an explicit solution for the OLS estimators of the (’s, we know
that they are the solutions to (4.2) or (4.3). Let us focus on one of these estimators, say @2, the
OLS estimator of (,, the partial derivative of Y; with respect to X;. As a solution to (4.2) or
(4.3), 52 is a multiple regression coefficient estimate of 5. Alternatively, we can interpret 52
as a simple linear regression coefficient.

Claim 1: (i) Run the regression of Xs on all the other X’s in (4.1), and obtain the residuals
Vg, ie., Xo = )A(g +?2' (ii) Run the simple regression of Y on Vs, the resulting estimate of the
slope coefficient is (3.

The first regression essentially cleans out the effect of the other X’s from X5, leaving the vari-
ation unique to X5 in Us. Claim 1 states that 8, can be interpreted as a simple linear regression
coefficient of Y on this residual. This is in line with the partial derivative interpretation of (3.
The proof of claim 1 is given in the Appendix. Using the results of the simple regression given
in (3.4) with the regressor X; replaced by the residual Us, we get

By = S0 DaYi/ S D (4.5)
and from (3.6) we get
var(fy) = 0/ Y1, 73, (4.6)

An alternative interpretation of @2 as a simple regression coefficient is the following:

Claim 2: (i) Run Y on all the other X’s and get the predicted Y and the residuals, say &. (ii)
Run the simple linear regression of w on vs. BQ is the resulting estimate of the slope coefficient.
This regression cleans both Y and X5 from the effect of the other X’s and then regresses the
cleaned out residuals of Y on those of Xs. Once again this is in line with the partial derivative
interpretation of 5. The proof of claim 2 is simple and is given in the Appendix.

These two interpretations of 35 are important in that they provide an easy way of looking at
a multiple regression in the context of a simple linear regression. Also, it says that there is no
need to clean the effects of one X from the other X’s to find its unique effect on Y. All one has
to do is to include all these X’s in the same multiple regression. Problem 1 verifies this result
with an empirical example. This will also be proved using matrix algebra in Chapter 7.

Recall that R? = 1 — RSS/TSS for any regrebaon Let R2 be the R? for the regression
of X5 on all the other X's, then R} = 1 — Y7 93,/ ZZ | ©3; where z9; = Xo; — X5 and
Xy = ZZ 1 Xoi/n; TSS = >0 (Xo; — XQ) = Y  x3, and RSS = Y7, D3;. Equivalently,
Sy V5 = 2oy @3;(1— R3) and the

var(By) = 0%/ Y1, 93, = 0/ 31 a3(1 — R3) (4.7)

This means that the larger R3, the smaller is (1 — R2) and the larger is Var(ﬁz) holding o2
and Y, x%l fixed. This shows the relationship between multicollinearity and the variance of
the OLS estimates. High multicollinearity between X, and the other X'’s will result in high
RQ which in turn implies high variance for 62 Perfect multlcolhnearlty is the extreme case
where R% = 1. This in turn implies an infinite variance for ﬁQ. In general, high multicollinearity
among the regressors yields imprecise estimates for these highly correlated variables. The least
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squares regression estimates are still unbiased as long as assumptions 1 and 4 are satisfied,
but these estimates are unreliable as reflected by their high variances. However, it is important
to note that a low o2 and a high Z?:lmgi could counteract the effect of a high R3 leading
to a significant t-statistic for BQ. Maddala (2001) argues that high intercorrelation among the
explanatory variables are neither necessary nor sufficient to cause the multicollinearity problem.
In practice, multicollinearity is sensitive to the addition or deletion of observations. More on
this in Chapter 8. Looking at high intercorrelations among the explanatory variables is useful
only as a complaint. It is more important to look at the standard errors and t-statistics to assess
the seriousness of multicollinearity.

Much has been written on possible solutions to the multicollinearity problem, see Hill and
Adkins (2001) for a recent summary. Credible candidates include: (i) obtaining new and better
data, but this is rarely available; (ii) introducing nonsample information about the model pa-
rameters based on previous empirical research or economic theory. The problem with the latter
solution is that we never truly know whether the information we introduce is good enough to
reduce estimator Mean Square Error.

4.4 Overspecification and Underspecification of the Regression
Equation

So far we have assumed that the true linear regression relationship is always correctly specified.
This is likely to be violated in practice. In order to keep things simple, we consider the case
where the true model is a simple regression with one regressor Xj.

True model: Y; = o+ 51 X1 + u;

with u; ~ IID(0, 0%), but the estimated model is overspecified with the inclusion of an additional
irrelevant variable Xs, i.e.,

Estimated model: }A/Z =a+ ﬁlei + BQXQZ-

From the previous section, it is clear that 3, = S DY/ S, 7, where 7y is the OLS
residuals of X; on X5. Substituting the true model for Y we get

ﬂ1=512 1V11X11/Z 1V11+Z 1Vlzuz/2 1V11

since Z 11/\12 = 0. But, Xli = )?12‘ + /’;li and Z?:l Xlii/\li =0 implying that Z?:l /V\liXIi =
n_ D};. Hence,

/61 + Zz 1 I/lzul/ Zz 1 I/ll (48)
and E(Bl) = [3; since V; is a linear combination of the X’s, and E(X;u) = 0 for k = 1,2. Also,
Var(/ﬂ) =%/ >in1 Vlz =%/ >in1 z3;(1 - RY) (4.9)

where z1; = X1; — X3 and R% is the R? of the regression of X7 on Xs. Using the true model
to estimate 31, one would get by = Y0  xyy;/ > 22, with E(by) = (31 and var(by) =



4.4 Overspecification and Underspecification of the Regression Equation 77

o?/>°1, z3;. Hence, Var(Bl) > var(by). Note also that in the overspecified model, the estimate
for B, which has a true value of zero is given by

52 = Zz 11/21Y/Zz 11/21 (410)

where U5 is the OLS residual of X5 on X7. Substituting the true model for Y we get

EQ = Zz 1V21u74/21 11/21 (411)

since Y ' U9 X1; = 0 and Y ;" | Uy = 0. Hence, E(BQ) = 0 since 7y is a linear combination
of the X’s and E(Xu) = 0 for k = 1,2. In summary, overspecification still yields unbiased
estimates of 3; and 3,, but the price is a higher variance.

Similarly, the true model could be a two-regressors model

True model: Y; = o + 51 X145 + 89 X2i + w;
where u; ~ IID(0,02) but the estimated model is
Estimated model: }A/; =a+ Blei

The estimated model omits a relevant variable X5 and underspecifies the true relationship. In
this case

Bl =D i1 1Yi/ i x%z (4.12)
where z1; = X1; — X1. Substituting the true model for Y we get
Br=B1+ B iy wuiXai/ 31y fﬂ%z + 2o i/ 30 I%z (4.13)

Hence, E(Bl) = (1 + Babia since E(z1u) = 0 with bip = > | #1;X9;/ > i, 23;. Note that bjo
is the regression slope estimate obtained by regressing X5 on X; and a constant. Also, the

var(By) = E(By — E(B))* = B(X v/ Y0y ad)? = 02/ Y 2,

which understates the variance of the estimate of 3; obtained from the true model, i.e., by =
S DYi/ S DY, with

var(by) = 0%/ S0, 9% = 0%/ S a1 — RY) > var(By). (4.14)

In summary, underspecification yields biased estimates of the regression coefficients and under-
states the variance of these estimates. This is also an example of imposing a zero restriction
on 5 when in fact it is not true. This introduces bias, because the restriction is wrong, but
reduces the variance because it imposes more information even if this information may be false.
We will encounter this general principle again when we discuss distributed lags in Chapter 6.
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4.5 R-Squared versus R-Bar-Squared

Since OLS minimizes the residual sums of squares, adding one or more variables to the regres-
sion cannot increase this residual sums of squares. After all, we are minimizing over a larger
dimension parameter set and the minimum there is smaller or equal to that over a subset of the
parameter space, see problem 4. Therefore, for the same dependent variable Y, adding more vari-
ables makes > e? non-increasing and R? non-decreasing, since R? = 1 — >y e?/ Yo y?).
Hence, a criteria of selecting a regression that “maximizes R?” does not make sense, since we
can add more variables to this regression and improve on this R? (or at worst leave it the same).

In order to penalize the researcher for adding an extra variable, one computes

R =1 ¢/ (n = K)|/[i v/ (n = 1)) (4.15)

where Y, e? and Y ;' yi2 have been adjusted by their degrees of freedom. Note that the
numerator is the s of the regression and is equal to >, e?/(n — K). This differs from the
52 in Chapter 3 in the degrees of freedom. Here, it is n — K, because we have estimated K
coefficients, or because (4.2) represents K relationships among the residuals. Therefore knowing
(n — K) residuals we can deduce the other K residuals from (4.2). > I ; e? is non-increasing as
we add more variables, but the degrees of freedom decrease by one with every added variable.
Therefore, s> will decrease only if the effect of the >y e? decrease outweighs the effect of the
one degree of freedom loss on s2. This is exactly the idea behind R?, i.e., penalizing each added
variable by decreasing the degrees of freedom by one. Hence, this variable will increase R? only
if the reduction in ) ;" | e? outweighs this loss, i.e., only if s? is decreased. Using the definition

of R?, one can relate it to R? as follows:

(1-R*)=(1-R*[(n-1)/(n-K) (4.16)

4.6 Testing Linear Restrictions

In the simple linear regression chapter, we proved that the OLS estimates are BLUE provided
assumptions 1 to 4 were satisfied. Then we imposed normality on the disturbances, assumption
5, and proved that the OLS estimators are in fact the maximum likelihood estimators. Then
we derived the Cramér-Rao lower bound, and proved that these estimates are efficient. This
will be done in matrix form in Chapter 7 for the multiple regression case. Under normality
one can test hypotheses about the regression. Basically, any regression package will report the
OLS estimates, their standard errors and the corresponding t-statistics for the null hypothesis
that each individual coefficient is zero. These are tests of significance for each coefficient sep-
arately. But one may be interested in a joint test of significance for two or more coeflicients
simultaneously, or simply testing whether linear restrictions on the coefficients of the regression
are satisfied. This will be developed more formally in Chapter 7. For now, all we assume is
that the reader can perform regressions using his or her favorite software like EViews, STATA,
SAS, TSP, SHAZAM, LIMDEP or GAUSS. The solutions to (4.2) or (4.3) result in the OLS
estimates. These multiple regression coefficient estimates can be interpreted as simple regres-
sion estimates as shown in section 4.3. This allows a simple derivation of their standard errors.
Now, we would like to use these regressions to test linear restrictions. The strategy followed
is to impose these restrictions on the model and run the resulting restricted regression. The
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corresponding Restricted Residual Sums of Squares is denoted by RRSS. Next, one runs the
regression without imposing these linear restrictions to obtain the Unrestricted Residual Sums
of Squares, which we denote by URSS. Finally, one forms the following F-statistic:

(RRSS — URSS) /!
F = ~Fp,_ 4.1
URSS/(n — K) bin—K (4.17)

where ¢ denotes the number of restrictions, and n — K gives the degrees of freedom of the
unrestricted model. The idea behind this test is intuitive. If the restrictions are true, then the
RRSS should not be much different from the URSS. If RRSS is different from URSS, then
we reject these restrictions. The denominator of the F-statistic is a consistent estimate of the
unrestricted regression variance. Dividing by the latter makes the F-statistic invariant to units
of measurement. Let us consider two examples:

Example 2: Testing the joint significance of two regression coefficients. For e.g., let us test the
following null hypothesis Hp; 35 = (B3 = 0. These are two restrictions 8, = 0 and 83 = 0
and they are to be tested jointly. We know how to test for 3, = 0 alone or B3 = 0 alone
with individual ¢-tests. This is a test of joint significance of the two coefficients. Imposing this
restriction, means the removal of Xy and X3 from the regression, i.e., running the regression
of Y on Xy,..., Xk excluding Xy and X3. Hence, the number of parameters to be estimated
becomes (K — 2) and the degrees of freedom of this restricted regression are n — (K — 2). The
unrestricted regression is the one including all the X’s in the model. Its degrees of freedom
are (n — K). The number of restrictions are 2 and this can also be inferred from the difference
between the degrees of freedom of the restricted and unrestricted regressions. All the ingredients
are now available for computing F' in (4.17) and this will be distributed as Fpk.

Example 3: Test the equality of two regression coefficients Hy; 35 = (3, against the alternative
that Hy; 83 # B4. Note that Hy can be rewritten as Hp; 83 — 3, = 0. This can be tested using a
t-statistic that tests whether d = 35 — (3, is equal to zero. From the unrestricted regression, we
can obtain d = B3 - B4 with var(j) = Var(B3)+var(B4) - 2(:0v(§3, B4). The variance-covariance
matrix of the regression coefficients can be printed out with any regression package. In section
4.3, we gave these variances and covariances a simple regression interpretation. This means

~

that se(d) = \/V&I‘(C/Z\) and the t-statistic is simply ¢ = ((2\— O)/se(c?) which is distributed as
t,—k under Hy. Alternatively, one can run an F-test with the RRSS obtained from running the
following regression

Y = a+ 85X + B3;(Xsi + Xai) + 85X + .. + O Xk + wi

with 853 = 3, substituted in for 3,. This regression has the variable (X3; + X4;) rather than Xs;
and Xy; separately. The URSS is the regression of Y on all the X’s in the model. The degrees
of freedom of the resulting F'-statistic are 1 and n — K. The numerator degree of freedom states
that there is only one restriction. It will be proved in Chapter 7 that the square of the ¢-statistic
is exactly equal to the F-statistic just derived. Both methods of testing are equivalent. The first
one computes only the unrestricted regression and involves some further variance computations,
while the latter involves running two regressions and computing the usual F-statistic.

Example 4: Test the joint hypothesis Hy; 33 = 1 and 5 — 23, = 0. These two restrictions are
usually obtained from prior information or imposed by theory. The first restriction is 85 = 1.
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The value 1 could have been any other constant. The second restriction shows that a linear
combination of §5 and 3, is equal to zero. Substituting these restrictions in (4.1) we get

Y = a+ ByXoi + Xsi + 389 Xui + B5Xsi + .. + B Xki + ws
which can be written as
Y — X3 = o+ By(Xoi + 1 Xui) + 85 Xsi + . + B Xki + ui

Therefore, the RRSS can be obtained by regressing (Y — X3) on (Xa + %X4), X5,...,Xk. This
regression has n — (K — 2) degrees of freedom. The URSS is the regression with all the X’s
included. The resulting F-statistic has 2 and n — K degrees of freedom.

Example 5: Testing constant returns to scale in a Cobb-Douglas production function. @ =
AK“LPEYM%¢e" is a Cobb-Douglas production function with capital(K), labor(L), energy(E)
and material(M). Constant returns to scale means that a proportional increase in the inputs pro-
duces the same proportional increase in output. Let this proportional increase be A\, then K* =
MK, L* = AL, E* = AE and M* = AM. Q* = Nttt gogaSEY N foev = \etFt1+0)(,
For this last term to be equal to AQ, the following restriction must hold: @« + 3 +~v+ 4 = 1.
Hence, a test of constant returns to scale is equivalent to testing Hy; oo + 3+ v+ d = 1. The
Cobb-Douglas production function is nonlinear in the variables, and can be linearized by taking
logs of both sides, i.e.,

log@ = logA + alogK + BlogL + ylogE + dloghM + u (4.18)

This is a linear regression with Y = logQ@, X2 = logK, X3 = logL, X4 = logFE and X5 = logM.
Ordinary least squares is BLUE on this non-linear model as long as u satisfies assumptions
1-4. Note that these disturbances entered the original Cobb-Douglas production function mul-
tiplicatively as exp(u;). Had these disturbances entered additively as @ = AK CIBETM® + u
then taking logs does not simplify the right hand side and one has to estimate this with non-
linear least squares, see Chapter 8. Now we can test constant returns to scale as follows. The
unrestricted regression is given by (4.18) and its degrees of freedom are n — 5. Imposing H
means substituting the linear restriction by replacing say 3 by (1 —«a —~ —9). This results after
collecting terms in the following restricted regression with one less parameter

log(Q/L) =logA + alog(K/L) + ~log(E/L) + dlog(M/L) + u (4.19)

The degrees of freedom are n — 4. Once again all the ingredients for the test in (4.17) are there
and this statistic is distributed as F},n — 5 under the null hypothesis.

Example 6: Joint significance of all the slope coefficients. The null hypothesis is
Hy;By=083=..=0g =0

against the alternative Hp; at least one 3, # 0 for k = 2,..., K. Under the null, only the
constant is left in the regression. Problem 3.2 showed that for a regression of Y on a constant
only, the least squares estimate of a is Y. This means that the corresponding residual sum of
squares is Z?Zl(Yi—Y)Q. Therefore, RRSS = Total sums of squares of regression (4.1) = E?=1y¢2~
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The URSS is the usual residual sums of squares Y i €7

by (4.1). Hence, the corresponding F-statistic for Hy is

from the unrestricted regression given

_(TSS—RSS)/(K-1)  (Ciyi -3, e)/(E-1) R n-K
= mss-k T sk i@ k-1

i=1 "1

where R? = 1— (31, €2/ >°" | y?). This F-statistic has (K —1) and (n— K) degrees of freedom
under Hy, and is usually reported by regression packages.

4.7 Dummy Variables

Many explanatory variables are qualitative in nature. For example, the head of a household
could be male or female, white or non-white, employed or unemployed. In this case, one codes
these variables as “M” for male and “F” for female, or change this qualitative variable into a
quantitative variable called FEMALE which takes the value “0” for male and “1” for female.
This obviously begs the question: “why not have a variable MALE that takes on the value 1 for
male and 0 for female?” Actually, the variable MALE would be exactly 1-FEMALE. In other
words, the zero and one can be thought of as a switch, which turns on when it is 1 and off when
it is 0. Suppose that we are interested in the earnings of households, denoted by EARN, and
MALE and FEMALE are the only explanatory variables available, then problem 10 asks the
reader to verify that running OLS on the following model:

EARN = ayMALE + ap FEMALE + u (4.21)

gives ayy = “average earnings of the males in the sample” and ap = “average earnings of
the females in the sample.” Notice that there is no intercept in (4.21), this is because of what
is known in the literature as the “dummy variable trap.” Briefly stated, there will be perfect
multicollinearity between MALE, FEMALE and the constant. In fact, MALE + FEMALE =
1. Some researchers may choose to include the intercept and exclude one of the sex dummy
variables, say MALE, then

EARN = a+ SFEMALFE + u (4.22)
and the OLS estimates give @ = “average earnings of males in the sample” = a;;, while B =
ap — ap = “the difference in average earnings between females and males in the sample.”

Regression (4.22) is more popular when one is interested in contrasting the earnings between
males and females and obtaining with one regression the markup or markdown in average earn-
ings (aF —an) as well as the test of whether this difference is statistically different from zero.
This would be simply the ¢-statistic on 8 in (4.22). On the other hand, if one is interested in
estimating the average earnings of males and females separately, then model (4.21) should be
the one to consider. In this case, the t-test for ar — ayr = 0 would involve further calcula-
tions not directly given from the regression in (4.21) but similar to the calculations given in
Example 3.

What happens when another qualitative variable is included, to depict another classification
of the individuals in the sample, say for example, race? If there are three race groups in the
sample, WHITE, BLACK and HISPANIC. One could create a dummy variable for each of
these classifications. For example, WHITE will take the value 1 when the individual is white
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and 0 when the individual is non-white. Note that the dummy variable trap does not allow
the inclusion of all three categories as they sum up to 1. Also, even if the intercept is dropped,
once MALE and FEMALE are included, perfect multicollinearity is still present because MALE
+ FEMALE = WHITE + BLACK + HISPANIC. Therefore, one category from race should
be dropped. Suits (1984) argues that the researcher should use the dummy variable category
omission to his or her advantage, in interpreting the results, keeping in mind the purpose of
the study. For example, if one is interested in comparing earnings across the sexes holding race
constant, the omission of MALE or FEMALE is natural, whereas, if one is interested in the race
differential in earnings holding gender constant, one of the race variables should be omitted.
Whichever variable is omitted, this becomes the base category for which the other earnings are
compared. Most researchers prefer to keep an intercept, although regression packages allow for
a no intercept option. In this case one should omit one category from each of the race and sex
classifications. For example, if MALE and WHITE are omitted:

EARN = o+ BpFEMALE + 35 BLACK + (3 HISPANIC + u (4.23)

Assuming the error u satisfies all the classical assumptions, and taking expected values of both
sides of (4.23), one can see that the intercept @ = the expected value of earnings of the omitted
category which is “white males”. For this category, all the other switches are off. Similarly,
o + O is the expected value of earnings of “white females,” since the FEMALE switch is
on. One can conclude that S = difference in the expected value of earnings between white
females and white males. Similarly, one can show that a4 3y is the expected earnings of “black
males” and o + B + Bp is the expected earnings of “black females.” Therefore, 35 represents
the difference in expected earnings between black females and black males. In fact, problem
11 asks the reader to show that Oy represents the difference in expected earnings between
hispanic females and hispanic males. In other words, B3 represents the differential in expected
earnings between females and males holding race constant. Similarly, one can show that Gp is
the difference in expected earnings between blacks and whites holding sex constant, and (g is
the differential in expected earnings between hispanics and whites holding sex constant. The
main key to the interpretation of the dummy variable coefficients is to be able to turn on and
turn off the proper switches, and write the correct expectations.
The real regression will contain other quantitative and qualitative variables, like

EARN = o + BrFEMALE + 35 BLACK + 3 HISPANIC + v, EXP (4.24)
4+ EXP? 4+ 43 EDUC + v, UNION + u

where EXP is years of job experience, EDUC is years of education, and UNION is 1 if the
individual belongs to a union and 0 otherwise. EXP? is the squared value of EXP. Once again,
one can interpret the coefficients of these regressions by turning on or off the proper switches. For
example, 7, is interpreted as the expected difference in earnings between union and non-union
members holding all other variables included in (4.24) constant. Halvorsen and Palmquist (1980)
warn economists about the interpretation of dummy variable coefficients when the dependent
variable is in logs. For example, if the earnings equation is semi-logarithmic:

log(Farnings) = a + BUNION +~vEDUC +u

then v = % change in earnings for one extra year of education, holding union membership
constant. But, what about the returns for union membership? If we let Y7 = log(Earnings)
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when the individual belongs to a union, and Yy = log(Earnings) when the individual does not
belong to a union, then ¢ = % change in earnings due to union membership = (e¥1 — e¥0) /Y0,
Equivalently, one can write that log(1 + g) = Y1 — Yy = 3, or that g = e? — 1. In other words,
one should not hasten to conclude that 8 has the same interpretation as «. In fact, the %
change in earnings due to union membership is e? —1 and not 3. The error involved in using B
rather than e — 1 to estimate g could be substantial, especially if ﬂ is large. For example, when
B = 0.5,0.75,1; g = e —1=0. 65,1.12,1.72, respectively. Kennedy (1981) notes that if B is
unbiased for 3, g is not necessarily unbiased for g. However, consistency of ﬂ implies consistency
for g. If one assumes log-normal distributed errors, then E(eﬂ) = B+05Var(3), Based on this

result, Kennedy (1981) suggests estimating g by g = P+0-5Var(B)_1 | where Var(3) is a consistent
estimate of Var(().

Another use of dummy variables is in taking into account seasonal factors, i.e., including
3 seasonal dummy variables with the omitted season becoming the base for comparison.! For
example:

Sales = a + By Winter + BgSpring + BpFall + v Price +u (4.25)

the omitted season being the Summer season, and if (4.25) models the sales of air-conditioning
units, then ( is the difference in expected sales between the Fall and Summer seasons, holding
the price of an air-conditioning unit constant. If these were heating units one may want to
change the base season for comparison.

Another use of dummy variables is for War years, where consumption is not at its normal
level say due to rationing. Consider estimating the following consumption function

Ci=a+0Y;+0WAR; +u; t=1,2,...,T (4.26)

where C}; denotes real per capita consumption, Y; denotes real per capita personal disposable
income, and W AR, is a dummy variable taking the value 1 if it is a War time period and 0
otherwise. Note that the War years do not affect the slope of the consumption line with respect
to income, only the intercept. The intercept is « in non-War years and a + ¢ in War years. In
other words, the marginal propensity out of income is the same in War and non-War years, only
the level of consumption is different.

Of course, one can dummy other unusual years like periods of strike, years of natural disaster,
earthquakes, floods, hurricanes, or external shocks beyond control, like the oil embargo of 1973.
If this dummy includes only one year like 1973, then the dummy variable for 1973, call it
D73, takes the value 1 for 1973 and zero otherwise. Including D73 as an extra variable in the
regression has the effect of removing the 1973 observation from estimation purposes, and the
resulting regression coefficients estimates are exactly the same as those obtained excluding
the 1973 observation and its corresponding dummy variable. In fact, using matrix algebra in
Chapter 7, we will show that the coefficient estimate of D73 is the forecast error for 1973,
using the regression that ignores the 1973 observations. In addition, the standard error of the
dummy coefficient estimates is the standard error of this forecast. This is a much easier way
of obtaining the forecast error and its standard error from the regression package without
additional computations, see Salkever (1976). More on this in Chapter 7.
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Interaction Effects

So far the dummy variables have been used to shift the intercept of the regression keeping
the slopes constant. One can also use the dummy variables to shift the slopes by letting them
interact with the explanatory variables. For example, consider the following earnings equation:

EARN = a+arpFEMALE + SEDUC + u (4.27)

In this regression, only the intercept shifts from males to females. The returns to an extra year
of education is simply 8, which is assumed to be the same for males as well as females. But if
we now introduce the interaction variable (FEMALE x EDUC), then the regression becomes:

EARN = o + ap FEMALE + BEDUC + v(FEMALE x EDUC) + u (4.28)

In this case, the returns to an extra year of education depends upon the sex of the individual.
In fact, (FARN)/O(EDUC) = 8 + v(FEMALE) = (3 if male, and 3 + ~ if female. Note that
the interaction variable = EDUC if the individual is female and 0 if the individual is male.

Estimating (4.28) is equivalent to estimating two earnings equations, one for males and an-
other one for females, separately. The only difference is that (4.28) imposes the same variance
across the two groups, whereas separate regressions do not impose this, albeit restrictive, equal-
ity of the variances assumption. This set-up is ideal for testing the equality of slopes, equality
of intercepts, or equality of both intercepts and slopes across the sexes. This can be done with
the F-test described in (4.17). In fact, for Hp; equality of slopes, given different intercepts,
the restricted residuals sum of squares (RRSS) is obtained from (4.27), while the unrestricted
residuals sum of squares (URSS) is obtained from (4.28). Problem 12 asks the reader to set
up the F-test for the following null hypothesis: (i) equality of slopes and intercepts, and (ii)
equality of intercepts given the same slopes.

Dummy variables have many useful applications in economics. For example, several tests
including the Chow (1960) test, and Utts (1982) Rainbow test described in Chapter 8, can be
applied using dummy variable regressions. Additionally, they can be used in modeling splines,
see Poirier (1976) and Suits, Mason and Chan (1978), and fixed effects in panel data, see
Chapter 12. Finally, when the dependent variable is itself a dummy variable, the regression
equation needs special treatment, see Chapter 13 on qualitative limited dependent variables.

Empirical Example: Table 4.1 gives the results of a regression on 595 individuals drawn from
the Panel Study of Income Dynamics (PSID) in 1982. This data is provided on the Springer
web site as EARN.ASC. A description of the data is given in Cornwell and Rupert (1988). In
particular, log wage is regressed on years of education (ED), weeks worked (WKS), years of
full-time work experience (EXP), occupation (OCC = 1, if the individual is in a blue-collar
occupation), residence (SOUTH = 1, SMSA = 1, if the individual resides in the South, or
in a standard metropolitan statistical area), industry (IND = 1, if the individual works in a
manufacturing industry), marital status (MS = 1, if the individual is married), sex and race
(FEM = 1, BLK = 1, if the individual is female or black), union coverage (UNION = 1, if the
individual’s wage is set by a union contract). These results show that the returns to an extra year
of schooling is 5.7%, holding everything else constant. It shows that Males on the average earn
more than Females. Blacks on the average earn less than Whites, and Union workers earn more
than non-union workers. Individuals residing in the South earn less than those living elsewhere.
Those residing in a standard metropolitan statistical area earn more on the average than those



Table 4.1 Earnings Regression for 1982

Note 85

Dependent Variable: LWAGE

Analysis of Variance

Source

Model
Error
C Total

Root MSE
Dep Mean
C.V.

Variable
INTERCEP
WKS
SOUTH
SMSA
MS
EXP
EXP2
(016]6)
IND
UNION
FEM
BLK
ED

DF

12
582
594

o
=

N e e e e e e

Sum of
Squares
52.48064
61.68465
114.16529

0.32556
6.95074
4.68377

Parameter Estimates

Parameter

Estimate
5.590093
0.003413

-0.058763
0.166191
0.095237
0.029380

—-0.000486

-0.161522
0.084663
0.106278

—0.324557

—0.190422
0.057194

Mean
Square

4.37339
0.10599

R-square
Adj R-sq

Standard

Error
0.19011263
0.00267762
0.03090689
0.02955099
0.04892770
0.00652410
0.00012680
0.03690729
0.02916370
0.03167547
0.06072947
0.05441180
0.00659101

F Value
41.263

0.4597
0.4485

T for HO:

Parameter=0
29.404
1.275
-1.901
5.624
1.946
4.503
-3.833
-4.376
2.903
3.355
—5.344
-3.500
8.678

Prob > F
0.0001

Prob > |T|
0.0001
0.2030
0.0578
0.0001
0.0521
0.0001
0.0001
0.0001
0.0038
0.0008
0.0001
0.0005
0.0001

who do not. Individuals who work in a manufacturing industry or are not blue collar workers
or are married earn more on the average than those who are not. For EX P2 = (EX P)?, this
regression indicates a significant quadratic relationship between earnings and experience. All

the variables were significant at the 5% level except for WKS, SOUTH and MS.

Note

1. There are more sophisticated ways of seasonal adjustment than introducing seasonal dummies, see

Judge et al. (1985).

Problems

1. For the Cigarette Data given in Table 3.2. Run the following regressions:

(a) Real per capita consumption of cigarettes on real price and real per capita income. (All
variables are in log form, and all regressions in this problem include a constant).
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Real per capita consumption of cigarettes on real price.

Real per capita income on real price.

)
)
d) Real per capita consumption on the residuals of part (c).
) Residuals from part (b) on the residuals in part (c).

)

Compare the regression slope estimates in parts (d) and (e) with the regression coefficient
estimate of the real income coefficient in part (a), what do you conclude?

2. Simple versus Multiple Regression Coefficients. This is based on Baltagi (1987b). Consider the
multiple regression

Yi:aJrﬁ2X2i+ﬂ3X3i+ui ’L.:LQ,...,TL

along with the following auxiliary regressions:

Xoi = a+bXsi+ Dy
X3 = T+ dXo; + Vs

In section 4.3, we showed that BQ, the OLS estimate of 5 can be interpreted as a simple regression
of Y on the OLS residuals 5. A similar interpretation can be given to 33. Kennedy (1981, p. 416)
claims that 32 is not necessarily the same as 32, the OLS estimate of §2 obtained from the regression
Y on Vs, U3 and a constant, Y; = v+ daVs; + d3U3; + w;. Prove this claim by finding a relationship
between the B’s and the 4's.

3. For the simple regression Y; = a + 6X; + u; considered in Chapter 3, show that
(a) Bors = o1, i/ o1, 22 can be obtained using the residual interpretation by regressing
X on a constant first, getting the residuals 7 and then regressing Y on .

(b) Qors =Y — Bo .sX can be obtained using the residual interpretation by regressing 1 on X
and obtaining the residuals @ and then regressing Y on @.

(¢) Check the var(@ors) and var(ﬁOLS) in parts (a) and (b) with those obtained from the
residualing interpretation.

4. Effect of Additional Regressors on R2. This is based on Nieswiadomy (1986).

(a) Suppose that the multiple regression given in (4.1) has K; regressors in it. Denote the least
squares sum of squared errors by SSE;. Now add K> regressors so that the total number of
regressors is K = K; + K5. Denote the corresponding least squares sum of squared errors
by SSFE,. Show that SSE; < SSE;, and conclude that the corresponding R-squares satisfy
R} > R3.

(b) Derive the equality given in (4.16) starting from the definition of R? and R2.

(c) Show that the corresponding R-squares satisfy R? > R2Z when the F-statistic for the joint
significance of these additional K5 regressors is less than or equal to one.

5. Let Y be the output and X5 = skilled labor and X3 = unskilled labor in the following relationship:
Y; = a+ B9 Xoi + B3Xai + Ba(Xoi + Xzi) + Bs X3 + Be X5, + wi
What parameters are estimable by OLS?

6. Suppose that we have estimated the parameters of the multiple regression model:
Y: = 01 + Bo Xz + B3 Xz +uy

by Ordinary Least Squares (OLS) method. Denote the estimated residuals by (et = 1,...,T)
and the predicted values by (Y, t=1,...,T).
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(a) What is the R? of the regression of e on a constant, X» and X3?

(b) If we regress Y on a constant and }A’, what are the estimated intercept and slope coeffi-
cients? What is the relationship between the R? of this regression and the R? of the original
regression?

(c) If we regress Y on a constant and e, what are the estimated intercept and slope coefli-
cients? What is the relationship between the R? of this regression and the R? of the original
regression?

(d) Suppose that we add a new explanatory variable X4 to the original model and re-estimate
the parameters by OLS. Show that the estimated coefficient of X4 and its estimated standard
error will be the same as in the OLS regression of e on a constant, X5, X3 and X4 .

Consider the Cobb-Douglas production function in example 5. How can you test for constant
returns to scale using a ¢-statistic from the unrestricted regression given in (4.18).

For the multiple regression given in (4.1). Set up the F-statistic described in (4.17) for testing

(a) Ho; By = B4 = B6-
(b) Ho; By = —83; and B5 — B = 1.

. Monte Carlo Ezperiments. Hanushek and Jackson (1977, pp. 60-65) generated the following data

Y, = 154+ 1X9; + 2X3; + u; for i = 1,2,...,25 with a fixed set of Xo; and X3;, and wu;’s that
are IID ~ N(0,100). For each set of 25 u;’s drawn randomly from the normal distribution, a
corresponding set of 25 Y;’s are created from the above equation. Then OLS is performed on the
resulting data set. This can be repeated as many times as we can afford. 400 replications were
performed by Hanushek and Jackson. This means that they generated 400 data sets each of size 25
and ran 400 regressions giving 400 OLS estimates of a, 35, 33 and ¢2. The classical assumptions
are satisfied for this model, by construction, so we expect these OLS estimators to be BLUE, MLE
and efficient.

(a) Replicate the Monte Carlo experiments of Hanushek and Jackson (1977) and generate the
means of the 400 estimates of the regression coefficients as well as o2. Are these estimates
unbiased?

(b) Compute the standard deviation of these 400 estimates and call this 73,. Also compute the
average of the 400 standard errors of the regression estimates reported by the regression.
Denote this mean by §,. Compare these two estimates of the standard deviation of the
regression coefficient estimates to the true standard deviation knowing the true o2. What do
you conclude?

(c) Plot the frequency of these regression coefficients estimates? Does it resemble its theoretical
distribution.

(d) Increase the sample size form 25 to 50 and repeat the experiment. What do you observe?
(a) Derive the OLS estimates of ap and aps for YV; = apF; + apyM; + u; where Y is Earnings,

Fis FEMALE and M is MALE, see (4.21). Show that @ = Y, the average of the Y;’s only
for females, and @ = Yay, the average of the Y;’s only for males.

(b) Suppose that the regression is Y; = « + BF; + u;, see (4.22). Show that & = au, and
B =ap—aur.
(c) Substitute M =1 — F in (4.21) and show that « = apy and § = ap — ay.
(d) Verify parts (a), (b) and (c) using the earnings data underlying Table 4.1.
For equation (4.23)

EARN =a+ pFEMALE + g BLACK + Sy HISPANIC + u
Show that
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(a) E(Earnings/Hispanic Female) = o + B + S; also E(Earnings/Hispanic Male) = o + 8.
Conclude that 8 = E(Earnings/Hispanic Female) — E(Earnings/Hispanic Male).

(b) E(Earnings/Hispanic Female) — E(Earnings/White Female) = E(Earnings/Hispanic Male) —
E(Earnings/White Male) = 3.
(¢) E(Earnings/Black Female) — E(Earnings/White Female) = E(Earnings/Black Male) —
E(Earnings/White Male) = (5.
12. For the earnings equation given in (4.28), how would you set up the F-test and what are the
restricted and unrestricted regressions for testing the following hypotheses:
(a) The equality of slopes and intercepts for Males and Females.

(b) The equality of intercepts given the same slopes for Males and Females. Show that the
resulting F-statistic is the square of a t-statistic from the unrestricted regression.

(¢) The equality of intercepts allowing for different slopes for Males and Females. Show that the
resulting F-statistic is the square of a ¢-statistic from the unrestricted regression.

(d) Apply your results in parts (a), (b) and (c) to the earnings data underlying Table 4.1.
13. For the earnings data regression underlying Table 4.1.

(a) Replicate the regression results given in Table 4.1.
(b) Verify that the joint significance of all slope coefficients can be obtained from (4.20).

(c) How would you test the joint restriction that expected earnings are the same for Males and
Females whether Black or Non-Black holding everything else constant?

(d) How would you test the joint restriction that expected earnings are the same whether the
individual is married or not and whether this individual belongs to a Union or not?

(e) From Table 4.1 what is your estimate of the % change in earnings due to Union membership?
If the disturbances are assumed to be log-normal, what would be the estimate suggested by
Kennedy (1981) for this % change in earnings?

(f) What is your estimate of the % change in earnings due to the individual being married?

14. Crude Quality. Using the data set of U.S. oil field postings on crude prices ($/barrel), gravity
(degree API) and sulphur (% sulphur) given in the CRUDES.ASC file on the Springer web site.

(a) Estimate the following multiple regression model: POIL = 3,+3,GRAVITY + g; SULPHUR
+ e

(b) Regress GRAVITY = ag+ a1 SULPHUR + v; then compute the residuals (). Now perform
the regression

POIL =, + 5Vt + €

Verify that 7, is the same as ﬁz in part (a). What does this tell you?

(¢) Regress POIL = ¢; + ¢,SULPHUR + w. Compute the residuals (@). Now regress w on v
obtained from part (b), to get Wy = d1 + d2v;+ residuals. Show that d2 = (3, in part (a).
Again, what does this tell you?

(d) To illustrate how additional data affects multicollinearity, show how your regression in part
(a) changes when the sample is restricted to the first 25 crudes.

(e) Delete all crudes with sulphur content outside the range of 1 to 2 percent and run the multiple
regression in part (a). Discuss and interpret these results.

15. Consider the U.S. gasoline data from 1950-1987 given in Table 4.2, and obtained from the file
USGAS.ASC on the Springer web site.
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QMG PMG POP RGNP

Year CAR (1,000 Gallons) (%) (1,000) (Billion) PGNP
1950 49195212 40617285 0.272 152271 1090.4 26.1
1951 51948796 43896887 0.276 154878 1179.2 27.9
1952 53301329 46428148 0.287 157553 1226.1 28.3
1953 56313281 49374047 0.290 160184 1282.1 28.5
1954 58622547 51107135 0.291 163026 1252.1 29.0
1955 62688792 54333255 0.299 165931 1356.7 29.3
1956 65153810 56022406 0.310 168903 1383.5 30.3
1957 67124904 57415622 0.304 171984 1410.2 314
1958 68296594 59154330 0.305 174882 1384.7 32.1
1959 71354420 61596548 0.311 177830 1481.0 32.6
1960 73868682 62811854 0.308 180671 1517.2 33.2
1961 75958215 63978489 0.306 183691 1547.9 33.6
1962 79173329 62531373 0.304 186538 1647.9 34.0
1963 82713717 64779104 0.304 189242 1711.6 34.5
1964 86301207 67663848 0.312 191889 1806.9 35.0
1965 90360721 70337126 0.321 194303 1918.5 35.7
1966 93962030 73638812 0.332 196560 2048.9 36.6
1967 96930949 76139326 0.337 198712 2100.3 37.8
1968 101039113 80772657 0.348 200706 21954 39.4
1969 103562018 85416084 0.357 202677 2260.7 41.2
1970 106807629 88684050 0.364 205052 2250.7 43.4
1971 111297459 92194620 0.361 207661 2332.0 45.6
1972 117051638 95348904 0.388 209896 2465.5 47.5
1973 123811741 99804600 0.524 211909 2602.8 50.2
1974 127951254 100212210 0.572 213854 2564.2 55.1
1975 130918918 102327750 0.595 215973 2530.9 60.4
1976 136333934 106972740 0.631 218035 2680.5 63.5
1977 141523197 110023410 0.657 220239 2822.4 67.3
1978 146484336 113625960 0.678 222585 3115.2 72.2
1979 149422205 107831220 0.857 225055 31924 78.6
1980 153357876 100856070 1.191 227757 3187.1 85.7
1981 155907473 100994040 1.311 230138 3248.8 94.0
1982 156993694 100242870 1.222 232520 3166.0 100.0
1983 161017926 101515260 1.157 234799 3279.1 103.9
1984 163432944 102603690 1.129 237001 3489.9 107.9
1985 168743817 104719230 1.115 239279 3585.2 111.5
1986 173255850 107831220 0.857 241613 3676.5 114.5
1987 177922000 110467980 0.897 243915 3847.0 117.7

CAR: Stock of Cars POP: Population

RMG: Motor Gasoline Consumption RGNP: Real GNP in 1982 dollars

PMG: Retail Price of Motor Gasoline PGNP: GNP Deflator (1982=100)
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(a) For the period 1950-1972 estimate models (1) and (2):

10gQMG = B, + BologCAR + B4logPOP + B,logRGN P (1)
+85logPGN P + BglogPMG + u

0 QMG _ |\ RGNP | CAR . PMG )
8 CAR T T 2% pop T8 pop TS poN P

What restrictions should the §’s satisfy in model (1) in order to yield the +’s in model (2)?
Compare the estimates and the corresponding standard errors from models (1) and (2).

)
)
(d) Compute the simple correlations among the X’s in model (1). What do you observe?
) Use the Chow-F test to test the parametric restrictions obtained in part (b).

)

Estimate equations (1) and (2) now using the full data set 1950-1987. Discuss briefly the
effects on individual parameter estimates and their standard errors of the larger data set.

(g) Using a dummy variable, test the hypothesis that gasoline demand per CAR permanently
shifted downward for model (2) following the Arab Oil Embargo in 19737

(h) Construct a dummy variable regression that will test whether the price elasticity has changed
after 1973.

16. Consider the following model for the demand for natural gas by residential sector, call it model

(1):
logCons;: = By + B1logPgi: + BylogPos: + BslogPe; + B,logHDDjy + BslogP iy + iz

where i = 1,2,...,6 states and t = 1,2,...,23 years. Cons is the consumption of natural gas by
residential sector, Pg, Po and Pe are the prices of natural gas, distillate fuel oil, and electricity
of the residential sector. HDD is heating degree days and PI is real per capita personal income.
The data covers 6 states: NY, FL, MI, TX, UT and CA over the period 1967-1989. It is given in
the NATURAL.ASC file on the Springer web site.

(a) Estimate the above model by OLS. Call this model (1). What do the parameter estimates
imply about the relationship between the fuels?

(b) Plot actual consumption versus the predicted values. What do you observe?

(¢) Add a dummy variable for each state except California and run OLS. Call this model (2).
Compute the parameter estimates and standard errors and compare to model (1). Do any
of the interpretations of the price coefficients change? What is the interpretation of the New
York dummy variable? What is the predicted consumption of natural gas for New York in
19897

(d) Test the hypothesis that the intercepts of New York and California are the same.
(e) Test the hypothesis that all the states have the same intercept.

(f) Add a dummy variable for each state and run OLS without an intercept. Call this model
(3). Compare the parameter estimates and standard errors to the first two models. What is
the interpretation of the coefficient of the New York dummy variable? What is the predicted
consumption of natural gas for New York in 19897

(g) Using the regression in part (f), test the hypothesis that the intercepts of New York and
California are the same.
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Appendix
Residual Interpretation of Multiple Regression Estimates

Proof of Claim 1: Regressing X5 on all the other X’s yields residuals 7 that satisfy the usual properties
of OLS residuals similar to those in (4.2), i.e

Z:] 1 Vg =0, ZZ 1 V9 X3 = ZZ 1 UoiXyi = .. = Zle U2iXKgi =0 (A1)
Note that X is the dependent variable of this regression, and )?2 is the predicted value from this

regression. The latter satisfies Z?:l 79;X2; = 0. This holds because X5 is a linear combination of the
other X’s, all of which satisfy (A.1). Turn now to the estimated regression equation:

Yi=a+ By X0 + .. + B Xki + € (A.2)
Multiply (A.2) by Xg; and sum

S XaiYi=ayl, Xy +ﬁ2 S X5+ +ﬂK Doy Xoi X rei (A.3)

This uses the fact that Y., Xo;e; = 0. Alternatively, (A.3) is just the second equation from (4.3).
Substituting Xo; = Xo; + Vg, in (A.3) one gets

Z; 1X2LY+Zz 1V2L i—azle2t+62;?1)?22i+" (A.4)
+ ﬁKZz 1 XoiX ki + By Y1 Uy

using (A.1) and the fact that E;L:l)?gi/l;gi = 0. Multiply (A.2) by X,; and sum, we get
Yo X2,V = =ay,;, Xoi + Bs S XoiXoi + ..+ Bg > XoiXrci + +> Xiei (A.5)

But Z?zl )/(\-Qei = 0 since )A(z is a linear combination of all the other Xs, all of which satisfy (4.2). Also,
S XoiXo; = 3.1 X3, since Y1 | Xo;Us; = 0. Hence (A.5) reduces to

Z, 1X21 i —aZl 1X2z+ﬁ2 Zz 1X21+ +ﬂK 21 1X21XKL (A.6)
Subtracting (A.6) from (A.4), we get
S DaYi = By Y U3 (A.7)

and Bz is the slope estimate of the simple regression of Y on 7y as given in (4.5).
By substituting for Y; its expression from equation (4.1) in (4.5) we get

= By 2oy Xail2i/ 205 11’21“'2 Ly Daiuif 1”21 (A.8)

where Y1 | X1;02; = 0 and Y. | Us; = 0. But, Xo; = )?gi + 1725 and Y7, )A(glﬁgz = 0, which implies
that S0, XoiDa; = ., Da; and By = By 4+ S0 Dojui/ Yo, Da;. This means that 52 is unbiased with
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E(B2) = (3, since Vs is a linear combination of the X’s and these in turn are not correlated with the u’s.
Also,
~ ~ 2 752
var(fy) = E(By — B5)° = E(X7, Vaiwi/ Y7y V) =0 / 31 Vi

The same results apply for any Bk fork=2,...,K,ie.,

Br = i1 ViiYi/ 25, 1sz (A9)
where 7y, is the OLS residual of X}, on all the other X’s in the regression. Similarly,
B = Br+ iy P/ S P (A.10)

and E(ﬁk) By, with var(ﬁk) =02/ 3" D, for k=2,..., K. Note also that

COV(ﬁzaﬂk) = E(/BQ - ﬁ2)(ﬂk - B) = E(Zz 1 V2z“z/ 21 1 sz)(Z?ﬂ Vkiui/ Zz 1 Vkv)
= o’ Z:L:l 7727217141'/ Z?ﬂ DQz’ Z¢:1

Proof of Claim 2: Regressing Y on all the other X’s yields, Y; = Y; + @;. Substituting this expression
for Y; in (4.5) one gets

B2:(E 1V2zY+Z 1V21WZ/Z 11’27 Z 11/22“)1/2 1’/27 (A.11)

where the last equality follows from the fact that Y is a linear combination of all X’s excluding X, all
of which satisfy (A.1). Hence 3, is the estimate of the slope coefficient in the linear regression of & on
Va.

Simple, Partial and Multiple Correlation Coefficients

In Chapter 3, we interpreted the square of the simple correlation coefficient, r%,’X2, as the proportion of
the variation in Y that is explained by Xs. Similarly, rf,T x, 18 the R-squared of the simple regression
of Y on X for k = 2,..., K. In fact, one can compute these simple correlation coefficients and find
out which X} is most correlated with Y, say it is Xs. If one is selecting regressors to include in the
regression equation, Xs would be the best one variable candidate. In order to determine what variable
to include next, we look at partial correlation coefficients of the form ry x, . x, for k # 2. The square of
this first-order partial gives the proportion of the residual variation in Y, not explained by Xs, that is
explained by the addition of Xj. The maximum first-order partial (‘first’ because it has only one variable
after the dot) determines the best candidate to follow X5. Let us assume it is X5. The first-order partial
correlation coefficients can be computed from simple correlation coefficients as follows:

Y, Xs —TY,XoTX5,X3

2 2
\/1 VX \/1 XX

see Johnston (1984). Next we look at second-order partials of the form ry, x, x,,x, for k # 2,3, and so
on. This method of selecting regressors is called forward selection. Suppose there is only X5, X35 and X4
in the regression equation. In this case (1 — 7‘%7 x,) is the proportion of the variation in Y, i.e., DRRT-R

TY,X3.Xo =

that is not explained by Xa. Also (1 -7 x, x,)(1 = 7% x,) denotes the proportion of the variation in ¥’
not explained after the inclusion of both Xy and X3. Similarly (1—73 x, x, x,)(1 =73 x, x,) (1 =73 x,)
is the proportion of the variation in Y unexplained after the inclusion of X5, X3 and X4. But this is
exactly (1 — R?), where R? denotes the R-squared of the multiple regression of Y on a constant, Xo, X3
and Xy4. This R? is called the multiple correlation coefficient, and is also written as R%,' X5, X5.X,- Hence

(1- Rgﬂxz,xg,xﬂ =(1- 7”?f,xz)(l - 7'%/,)(34)(2)(1 - 7"ff,)@.xz,xa)

and similar expressions relating the multiple correlation coefficient to simple and partial correlation
coefficients can be written by including say X3 first then X, and X5 in that order.






CHAPTER 5
Violations of the Classical Assumptions

5.1 Introduction

In this chapter, we relax the assumptions made in Chapter 3 one by one and study the effect
of that on the OLS estimator. In case the OLS estimator is no longer a viable estimator, we
derive an alternative estimator and propose some tests that will allow us to check whether this
assumption is violated.

5.2 The Zero Mean Assumption

Violation of assumption 1 implies that the mean of the disturbances is no longer zero. Two
cases are considered:

Case 1: E(u;) =pu#0

The disturbances have a common mean which is not zero. In this case, one can subtract p from
the u;’s and get new disturbances u; = u; — ¢ which have zero mean and satisfy all the other
assumptions imposed on the w;’s. Having subtracted p from u; we add it to the constant «
leaving the regression equation intact:

Yi=a"+8X,4+u] i=1,2,...,n (5.1)

where a® = a + u. It is clear that only a® and § can be estimated, and not « nor u. In other
words, one cannot retrieve a and p from an estimate of a* without additional assumptions or
further information, see problem 10. With this reparameterization, equation (5.1) satisfies the
four classical assumptions, and therefore OLS gives the BLUE estimators of o* and 3. Hence,
a constant non-zero mean for the disturbances affects only the intercept estimate but not the
slope. Fortunately, in most economic applications, it is the slope coefficients that are of interest
and not the intercept.

Case 2: E(u;) = y;

The disturbances have a mean which varies with every observation. In this case, one can trans-
form the regression equation as in (5.1) by adding and subtracting p,;. The problem, however,
is that o] = o+ p; now varies with each observation, and hence we have more parameters than
observations. In fact, there are n intercepts and one slope to be estimated with n observations.
Unless we have repeated observations like in panel data, see Chapter 12 or we have some prior
information on these o], we cannot estimate this model.
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5.3 Stochastic Explanatory Variables

Sections 5.5 and 5.6 will study violations of assumptions 2 and 3 in detail. This section deals with
violations of assumption 4 and its effect on the properties of the OLS estimators. In this case,
X is a random variable which may be (i) independent; (ii) contemporaneously uncorrelated; or
(iii) simply correlated with the disturbances.

Case 1: If X is independent of u, then all the results of Chapter 3 still hold, but now they are
conditional on the particular set of X’s drawn in the sample. To illustrate this result, recall
that for the simple linear regression:

ﬁOLS = B+ >, wiu; where w; = x;/ Y1) %2 (5.2)

Hence, when we take expectations E(D 7, wiu;) = Y. E(w;)E(u;) = 0. The first equality
holds because X and u are independent and the second equality holds because the u’s have zero
mean. In other words the unbiasedness property of the OLS estimator still holds. However, the

var(Bors) = B(Y1y wiwi)? = Yiy S0y B(wiw;) E(uiug) = 0® Y1) E(w?)

where the last equality follows from assumptions 2 and 3, homoskedasticity and no serial correla-
tion. The only difference between this result and that of Chapter 3 is that we have expectations
on the X'’s rather than the X’s themselves. Hence, by conditioning on the particular set of X’s
that are observed, we can use all the results of Chapter 3. Also, maximizing the likelihood in-
volves both the X’s and the u’s. But, as long as the distribution of the X’s does not involve the
parameters we are estimating, i.e., a, # and o2, the same maximum likelihood estimators are
obtained. Why? Because f(x1,Z2,...,%n, U1, U2,...,Un) = f1(x1,22,...,2y) fo(ur, ug, ..., up)
since the X’s and the u’s are independent. Maximizing f with respect to (a, 3, 02) is the same
as maximizing fo with respect to (a, 3,0?) as long as f; is not a function of these parameters.

Case 2: Consider a simple model of consumption, where Y;, current consumption, is a function
of Y;_1, consumption in the previous period. This is the case for a habit forming consumption
good like cigarette smoking. In this case our regression equation becomes

Yi=a+8Y1+w t=2,...,T (5.3)

where we lost one observation due to lagging. It is obvious that Y; is correlated to wu, but the
question here is whether Y;_; is correlated to u;. After all, Y;_1 is our explanatory variable
X;. As long as assumption 3 is not violated, i.e., the u’s are not correlated across periods, wu;
represents a freshly drawn disturbance independent of previous disturbances and hence is not
correlated with the already predetermined Y;_1. This is what we mean by contemporaneously
uncorrelated, i.e., u; is correlated with Yy, but it is not correlated with Y;_;. The OLS estimator
of B is

Bors = ZtT:Q Yeyr-1/ ZtT:Q Y1 =0+ ZtT:Q Yr—1ue/ ZtT:Q Y1 (5.4)
and the expected value of (5.4) is not 8 because in general,

E(ZtT:Q Ye—1us/ ZtT:Q yt2—1) # E(Z?:Q ytflut)/E(Zthz yt2—1)'

The expected value of a ratio is not the ratio of expected values. Also, even if E(Y;_ju:) = 0,
one can easily show that E(y;—ju:) # 0. In fact, ys—1 = Y;—1 — Y, and Y contains Y; in it, and



5.3  Stochastic Explanatory Variables 97

we know that E(Y;u;) # 0. Hence, we lost the unbiasedness property of OLS. However, all the
asymptotic properties still hold. In fact, G5 g is consistent because

plim Bppg = B+ cov(Yi_1,up) /var(Yi_1) = 3 (5.5)

where the second equality follows from (5.4) and the fact that plim(ZtT=2 yr—1ug/T) is
cov(Y;_1,us) which is zero, and plim(X:;’F:2 y? 1/T) = var(Y;_1) which is positive and finite.

Case 3: X and u are correlated, in this case OLS is biased and inconsistent. This can be
easily deduced from (5.2) since plim(}_1 | ;u;/n) is the cov(X,u) # 0, and plim(>_1 | 7/n)
is positive and finite. This means that OLS is no longer a viable estimator, and an alternative
estimator that corrects for this bias has to be derived. In fact we will study three specific cases
where this assumption is violated. These are: (i) the errors in measurement case; (ii) the case
of a lagged dependent variable with correlated errors; and (iii) simultaneous equations.

Briefly, the errors in measurement case involves a situation where the true regression model
is in terms of X*, but X* is measured with error, i.e., X; = X 4+ v;, so we observe X; but not
X7. Hence, when we substitute this X; for X in the regression equation, we get

Yi=a+ 08X +u=a+ 0X;+ (u; — Bv;) (5.6)

where the composite error term is now correlated with X; because X; is correlated with v;.
After all, X; = X} +v; and E(X;v;) = E(v?) if X; and v; are uncorrelated.

Similarly, in case (ii) above, if the u’s were correlated across time, i.e., u;— is correlated with
ug, then Y;_1, which is a function of u;—1, will also be correlated with w;, and F(Y;_1u;) # 0.
More on this and how to test for serial correlation in the presence of a lagged dependent variable
in Chapter 6.

Finally, if one considers a demand and supply equations where quantity @ is a function of
price P; in both equations

Qi =a+ PP, +u; (demand) (5.7)

Qt=0+~P+vt (supply) (5.8)

The question here is whether P, is correlated with the disturbances u; and v; in both equations.
The answer is yes, because (5.7) and (5.8) are two equations in two unknowns P; and Q;. Solving
for these variables, one gets P; as well as (; as a function of a constant and both u; and v. This
means that F(Pu;) # 0 and E(Pw;) # 0 and OLS performed on either (5.7) or (5.8) is biased
and inconsistent. We will study this simultaneous bias problem more rigorously in Chapter 11.

For all situations where X and w are correlated, it would be illuminating to show graphically
why OLS is no longer a consistent estimator. Let us consider the case where the disturbances
are, say, positively correlated with the explanatory variable. Figure 3.3 of Chapter 3 shows the
true regression line a+ 3X;. It also shows that when X; and u; are positively correlated then an
X; higher than its mean will be associated with a disturbance u; above its mean, i.e., a positive
disturbance. Hence, Y; = a + 0X; + u; will always be above the true regression line whenever
X, is above its mean. Similarly Y; would be below the true regression line for every X; below
its mean. This means that not knowing the true regression line, a researcher fitting OLS on
this data will have a biased intercept and slope. In fact, the intercept will be understated and
the slope will be overstated. Furthermore, this bias does not disappear with more data, since



98 CHAPTER 5: Violations of the Classical Assumptions

this new data will be generated by the same mechanism described above. Hence these OLS
estimates are inconsistent.

Similarly, if X; and w; are negatively correlated, the intercept will be overstated and the
slope will be understated. This story applies to any equation with at least one of its right hand
side variables correlated with the disturbance term. Correlation due to the lagged dependent
variable with autocorrelated errors, is studied in Chapter 6, whereas the correlation due to the
simultaneous equations problem is studied in Chapter 11.

5.4 Normality of the Disturbances

If the disturbance are not normal, OLS is still BLUE provided assumptions 1-4 still hold. Nor-
mality made the OLS estimators minimum variance unbiased MVU and these OLS estimators
turn out to be identical to the MLE. Normality allowed the derivation of the distribution of
these estimators and this in turn allowed testing of hypotheses using the ¢ and F-tests consid-
ered in the previous chapter. If the disturbances are not normal, yet the sample size is large,
one can still use the normal distribution for the OLS estimates asymptotically by relying on the
Central Limit Theorem, see Theil (1978). Theil’s proof is for the case of fixed X’s in repeated
samples, zero mean and constant variance on the disturbances. A simple asymptotic test for
the normality assumption is given by Jarque and Bera (1987). This is based on the fact that
the normal distribution has a skewness measure of zero and a kurtosis of 3. Skewness (or lack
of symmetry) is measured by

_[B(X —p)’?  Square of the 3rd moment about the mean
O [B(X — )2 Cube of the variance

Kurtosis (a measure of flatness) is measured by

E(X —p)*  4th moment about the mean
[E(X —u)?2  Square of the variance

R =

For the normal distribution S = 0 and x = 3. Hence, the Jarque-Bera (JB) statistic is given by

8% (k—3)?

where S represents skewness and k represents kurtosis of the OLS residuals. This statistic is
asymptotically distributed as x? with two degrees of freedom under Hy. Rejecting Hy, rejects
normality of the disturbances but does not offer an alternative distribution. In this sense,
the test is non-constructive. In addition, not rejecting Hy does not necessarily mean that the
distribution of the disturbances is normal, it only means we do not reject that the distribution
of the disturbances is symmetric and has a kurtosis of 3. See the empirical example in section
5.5 for an illustration. The Jarque-Bera test is part of the standard output using EViews.

5.5 Heteroskedasticity

Violation of assumption 2, means that the disturbances have a varying variance, i.e., E(uf) = 022,

i=1,2,...,n. First, we study the effect of this violation on the OLS estimators. For the simple
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linear regression it is obvious that BO s given in equation (5.2) is still unbiased and consistent
because these properties depend upon assumptions 1 and 4, and not assumption 2. However,
the variance of Bpr,g is now different

var(Bors) = var(iLy wiwg) = 3Ly wioy = iy wio} /(i 47)° (5.9)
2

where the second equality follows from assumption 3 and the fact that var(u;) is now o7.
Note that if 07 = o2, this reverts back to 02/ > 1 | 27, the usual formula for var(ﬁo 1,g) under
homoskedasticity. Furthermore, one can show that E(s?) will involve all of the o%’s and not one
common o2, see problem 1. This means that the regression package reporting s/ 3" | 2 as the
estimate of the variance of BO 1.5 is committing two errors. One, it is not using the right formula
for the variance, i.e., equation (5.9). Second, it is using 52 to estimate a common ¢? when in
fact the o?’s are different. The bias from using s?/ 1, 7 as an estimate of Var(EOLS) will
depend upon the nature of the heteroskedasticity and the regressor. In fact, if 012 is positively
related to 22, one can show that s?/Y " 2 understates the true variance and hence the t-
statistic reported for 8 = 0 is overblown, and the confidence interval for ( is tighter than it is
supposed to be, see problem 2. This means that the t-statistic in this case is biased towards
rejecting Hy; 6 = 0, i.e., showing significance of the regression slope coefficient, when it may
not be significant.

The OLS estimator of § is linear unbiased and consistent, but is it still BLUE? In order to
answer this question, we note that the only violation we have is that the var(u;) = U?. Hence, if
we divided u; by o;/c, the resulting u} = ou;/o; will have a constant variance o2. It is easy to
show that u* satisfies all the classical assumptions including homoskedasticity. The regression

model becomes
oYi/oi =acjo;+ PoX;/o; + u} (5.10)
and OLS on this model (5.10) is BLUE. The OLS normal equations on (5.10) are
Yin(Yifod) = a3, (1/oF) + B35, (Xi/oF)

Y (YiXi/of) = a 30 (Xifo}) + B (XF /o)
Note that o2 drops out of these equations. Solving (5.11), see problem 3, one gets
& =[S, Vie/od) ) X, (Vo)) = B (Xafo?)/ X, (/o)) = V™ = BX* (5.12a)
with Y = [0, (Yi/o?)/ 321, (1/07)] = Y0, wiY/ Yo7, wi and
X' = [ (Xifod)) 3o (Vo)) = 30y wiXi/ Yoy wf

where w} = (1/0?). Similarly,
5 = Doty (oo (YiXi/oF)] — oy (X /o) i, (Yi/o})]
iy X2 /oI, (/o)) = [ (Xi /o))
iy wi) Qi wi Xa¥e) = (O wi Xi) O i,y wiYi)
(5o 0Oy Wi X2 — (g w0 X2 (120)
S wi (X - X (- V)
S i (X, - X7

(5.11)
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It is clear that the BLU estimators & and (3, obtained from the regression in (5.10), are different
from the usual OLS estimators aprg and BOLS since they depend upon the af’s. It is also true
that when 022 = o2 for all i = 1,2,...,n, i.e., under homoskedasticity, (5.12) reduces to the
usual OLS estimators given by equation (3.4) of Chapter 3. The BLU estimators weight the
i-th observation by (1/0;) which is a measure of precision of that observation. The more precise
the observation, i.e., the smaller o;, the larger is the weight attached to that observation. a
and (8 are also known as Weighted Least Squares (WLS) estimators which are a specific form
of Generalized Least Squares (GLS). We will study GLS in details in Chapter 9, using matrix
notation.

Under heteroskedasticity, OLS looses efficiency in that it is no longer BLUE. However, be-
cause it is still unbiased and consistent and because the true U?’
searchers compute OLS as an initial consistent estimator of the regression coefficients. It is
important to emphasize however, that the standard errors of these estimates as reported by the
regression package are biased and any inference based on these estimated variances including
the reported t-statistics are misleading. White (1980) proposed a simple procedure that would
yield heteroskedasticity consistent standard errors of the OLS estimators. In equation (5.9), this
amounts to replacing o2 by e?, the square of the i-th OLS residual, i.e.,

S are never known some re-

White's var(Bops) = S1y a2ed /(S 2 (5.13)

Note that we can not consistently estimate U? by e?, since there is one observation per parameter
estimated. As the sample size increases, so does the number of unknown o2’s. What White (1980)
consistently estimates is the V&I"(BO 1s) which is a weighted average of the e?. The same analysis
applies to the multiple regression OLS estimates. In this case, White’s (1980) heteroskedasticity
consistent estimate of the variance of the k-th OLS regression coefficient 3, is given by

W hite’s var(ﬁk) = Z?=1 Diie?/(ZLl %)2

where ﬁ% is the squared OLS residual obtained from regressing X on the remaining regres-
sors in the equation being estimated. e; is the i-th OLS residual from this multiple regression
equation. Many regression packages provide White’s heteroskedasticity-consistent estimates of
the variances and their corresponding robust ¢-statistics. For example, using EViews, one clicks
on Quick, choose Estimate Equation. Now click on Options, a menu appears where one selects
White to obtain the heteroskedasticity-consistent estimates of the variances.

While the regression packages correct for heteroskedasticity in the t-statistics they do not
usually do that for the F-statistics studied, say in Example 2 in Chapter 4. Wooldridge (1991)
suggests a simple way of obtaining a robust LM statistic for Hyp; B3 = 83 = 0 in the multiple
regression (4.1). This involves the following steps:

(1) Run OLS on the restricted model without X3 and X3 and obtain the restricted least
squares residuals u.

(2) Regress each of the independent variables excluded under the null (i.e., X2 and X3) on all
of the other included independent variables (i.e., X4, X5, ..., Xk ) including the constant.
Get the corresponding residuals vs and v, respectively.

(3) Regress the dependent variable equal to 1 for all observations on U2, U3% without a con-
stant and obtain the robust LM statistic equal to the n- the sum of squared residuals of
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this regression. This is exactly nR2 of this last regression. Under Hy this LM statistic is
distributed as x3.

Since OLS is no longer BLUE, one should compute & and ﬁ The only problem is that the o;’s
are rarely known. One example where the o;’s are known up to a scalar constant is the following
simple example of aggregation.

Example 5.1: Aggregation and Heteroskedasticity. Let Y;; be the observation on the j-th firm
in the i-th industry, and consider the following regression:

Yij:a—FﬂXij—&—uij 1=L12....n;1=1,2,...,m (514)

If only aggregate observations on each industry are available, then (5.14) is summed over firms,
ie.,

Yi=an; +6X;+uw; i=12,...,m (5.15)
where Y; = > Yy, Xi = 300 Xyj, wi = 5% gy for i = 1,2,...,m. Note that although the
u;;’s are 1ID(0, 0%), by aggregating, we get u; ~ (0,n;02). This means that the disturbances in
(5.15) are heteroskedastic. However, 0? = n;0? and is known up to a scalar constant. In fact,
o/o; is 1/(n;)"/2. Therefore, premultiplying (5.15) by 1/(n;)'/? and performing OLS on the
transformed equation results in BLU estimators of a and 8. In other words, BLU estimation
reduces to performing OLS of Y;/(n;)'/? on (n;)'/? and X;/(n;)*/?, without an intercept.

There may be other special cases in practice where o; is known up to a scalar, but in general,
0; is usually unknown and will have to be estimated. This is hopeless with only n observations,
since there are n ¢;’s, so we either have to have repeated observations, or know more about the
0;’s. Let us discuss these two cases.

Case 1: Repeated Observations

Suppose that n; households are selected randomly with income X; for ¢ = 1,2,...,m. For
each household j = 1,2,...,n;, we observe its consumption expenditures on food, say Y;;. The
regression equation is

Yij:a—l—ﬁXi—i—uij 1=1,2,....m; 3=12,...,n (516)

where m is the number of income groups selected. Note that X; has only one subscript, whereas
Y;; has two subscripts denoting the repeated observations on households with the same income
X;. The u;;’s are independently distributed (0, 0?) reflecting the heteroskedasticity in consump-
tion expenditures among the different income groups. In this case, there are n = )" | n; obser-
vations and m 02’s to be estimated. This is feasible, and there are two methods for estimating
these 02’s. The first is to compute

57 = 5L (Yij = Yi)?/(ni = 1)

where Y; = > 71 Yij/n;. The second is to compute 52 = > e?j /n; where e;; is the OLS
residual given by

eij = Yij —Qors — BorsXi
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2 or 87 for o7 in (5.12) will result
in feasible estimators of o and 3. However, the resulting estimates are no longer BLUE. The
substitution of the consistent estimators of 012 is justified on the basis that the resulting «
and 3 estimates will be asymptotically efficient, see Chapter 9. Of course, this step could have
been replaced by a regression of Y;;/5; on (1/5;) and (X;/5;) without a constant, or the similar
regression in terms of s;. For this latter estimate, 3?, one can iterate, i.e., obtaining new residuals
based on the new regression estimates and therefore new 3*12 The process continues until the
estimates obtained from the r-th iteration do not differ from those of the (r + 1)th iteration
in absolute value by more than a small arbitrary positive number chosen as the convergence
criterion. Once the estimates converge, the final round estimators are the maximum likelihood
estimators, see Oberhofer and Kmenta (1974).

Both estimators of o7 are consistent. Substituting either 52

Case 2: Assuming More Information on the Form of Heteroskedasticity

If we do not have repeated observations, it is hopeless to try and estimate n variances and «
and (8 with only n observations. More structure on the form of heteroskedasticity is needed to
estimate this model, but not necessarily to test it. Heteroskedasticity is more likely to occur
with cross-section data where the observations may be on firms with different size. For example,
a regression relating profits to sales might have heteroskedasticity, because larger firms have
more resources to draw upon, can borrow more, invest more, and loose or gain more than
smaller firms. Therefore, we expect the form of heteroskedasticity to be related to the size of
the firm, which is reflected in this case by the regressor, sales, or some other variable that
measures size, like assets. Hence, for this regression we can write 07 = 02Z2, where Z; denotes
the sales or assets of firm i. Once again the form of heteroskedasticity is known up to a scalar
constant and the BLU estimators of o and 3 can be obtained from (5.12), assuming Z; is known.
Alternatively, one can run the regression of Y;/Z; on 1/Z; and X;/Z; without a constant to get
the same result. Special cases of Z; are X; and E(Y;). (i) If Z; = X, the regression becomes that
of Y;/ X, on 1/X; and a constant. Note that the regression coefficient of 1/X; is the estimate of
«, while the constant of the regression is now the estimate of 8. But, is it possible to have u;
uncorrelated with X; when we are assuming var(u;) related to X;? The answer is yes, as long
as E(u;/X;) = 0, i.e., the mean of u; is zero for every value of X;, see Figure 3.4 of Chapter
3. This, in turn, implies that the overall mean of the wu;’s is zero, i.e., E(u;) = 0 and that
cov(X;,u;) = 0. If the latter is not satisfied and say cov(X;,u;) is positive, then large values
of X; imply large values of u;. This would mean that for these values of X;, we have a non-
zero mean for the corresponding wu;’s. This contradicts E(u;/X;) = 0. Hence, if E(u;/X;) = 0,
then cov(X;,u;) = 0. (ii) If Z; = E(Y;) = a + $X;, then o7 is proportional to the population
regression line, which is a linear function of a and . Slnce the OLS estimates are consistent
one can estimate E(Y;) by Y; = aors + BOLﬁX use Z; = Y; instead of E(Y;). In other words,
run the regression of Y; /Y on 1/¥; and X;/Y; without a constant. The resulting estimates are
asymptotically efficient, see Amemiya (1973).

One can generalize 02 = 02Z? to 0? = 02Z! where § is an unknown parameter to be es-
timated. Hence rather than estimating n o?’s one has to estimate only ¢ and §. Assuming
normality one can set up the likelihood function and derive the first-order conditions by dif-
ferentiating that likelihood with respect to «, 3, ¢ and §. The resulting equations are highly
nonlinear. Alternatively, one can search over possible values for 6 = 0,0.1,0.2,...,4, and get the

corresponding estimates of «, 3, and 2 from the regression of Y/ZW2 on 1/Z6/2 and X; /Z(S/2
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without a constant. This is done for every ¢ and the value of the likelihood function is reported.
Using this search procedure one can get the maximum value of the likelihood and corresponding
to it the MLE of o, 3, 02 and 6. Note that as J increases so does the degree of heteroskedasticity.
Problem 4 asks the reader to compute the relative efficiency of the OLS estimator with respect
to the BLU estimator for Z; = X; for various values of §. As expected the relative efficiency of
the OLS estimator declines as the degree of heteroskedasticity increases.

One can also generalize 012 = 02szs to include more Z variables. In fact, a general form of
this multiplicative heteroskedasticity is

logaz2 =logo? + 61logZy; + 0210829 + . .. + 8,logZ,; (5.17)
with r < n, otherwise one cannot estimate with n observations. Z, Zs, ..., Z, are known vari-
ables determining the heteroskedasticity. Note that if do = d3 = ... = §, = 0, we revert

back to 01-2 = chZZ?S , where 0 = d7. For the estimation of this general multiplicative form of
heteroskedasticity, see Harvey (1976).

Another form for heteroskedasticity, is the additive form

022 =a+b0Zy;+boZoi+...+ 0.2, (5.18)
where r < n, see Goldfeld and Quandt (1972). Special cases of (5.18) include
07 =a+ b X; + by X} (5.19)

where if a and b; are zero we have a simple form of multiplicative heteroskedasticity. In order
to estimate the regression model with additive heteroskedasticity of the type given in (5.19),
one can get the OLS residuals, the e;’s, and run the following regression

e =a+bX;+ b X+ (5.20)
where v; = €2 — o2. The v;’s are heteroskedastic, and the OLS estimates of (5.20) yield the

2 _
following estimates of o

G} =oLs + br.oLsXi + broLs X} (5.21)

One can obtain a better estimate of the U?’s by computing the following regression which
corrects for the heteroskedasticity in the v;’s

(€/5:) = a(1/54) + bi(X:/5:) + ba( X7 /5:) + wi (5.22)
The new estimates of o2 are
57 =+ b1 X; + b X7} (5.23)

where @, by and by are the OLS estimates from (5.22). Using the 57’s one can run the regression of
Yi/o; on (1/5;) and X;/&; without a constant to get asymptotically efficient estimates of o and
(. These have the same asymptotic properties as the MLE estimators derived in Rutemiller and
Bowers (1968), see Amemiya (1977) and Buse (1984). The problem with this iterative procedure
is that there is no guarantee that the 5? ’s are positive, which means that the square root o;
may not exist. This problem would not occur if 0? = (a + b1 X; + b2 X?)? because in this case
one regresses |e;| on a constant, X; and X? and the predicted value from this regression would
be an estimate of ¢;. It would not matter if this predictor is negative, because we do not have
to take its square root and because its sign cancels in the OLS normal equations of the final
regression of Y;/a; on (1/5;) and (X;/o;) without a constant.
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Testing for Homoskedasticity

In the repeated observation’s case, one can perform Bartlett’s (1937) test. The null hypothesis

is Hp;0% = 0% = ... = ¢2,. Under the null there is one variance o2 which can be estimated
by the pooled variance s> = Y "" v;5?/v where v = > 1", v;, and v; = n; — 1. Under the
alternative hypothesis there are m different variances estimated by 37 for i = 1,2,...,m. The

Likelihood Ratio test, which computes the ratio of the likelihoods under the null and alternative
hypotheses, reduces to computing

B = [vlogs® — Y1 v; logs?]/c (5.24)

where ¢ =1+ >, (1/v;) — 1/v] /3(m — 1). Under Hy, B is distributed x2,_;. Hence, a large
p-value for the B-statistic given in (5.24) means that we do not reject homoskedasticity whereas,
a small p-value leads to rejection of Hy in favor of heteroskedasticity.

In case of no repeated observations, several tests exist in the literature. Among these are the
following;:

(1) Glejser’s (1969) Test: In this case one regresses |e;| on a constant and Z? for § =
1,—1,0.5 and —0.5. If the coefficient of Zf is significantly different from zero, this would lead
to a rejection of homoskedasticity. The power of this test depends upon the true form of het-
eroskedasticity. One important result however, is that this power is not seriously impaired if
the wrong value of ¢ is chosen, see Ali and Giaccotto (1984) who confirmed this result using
extensive Monte Carlo experiments.

(2) The Goldfeld and Quandt (1965) Test: This is a simple and intuitive test. One orders
the observations according to X; and omits ¢ central observations. Next, two regressions are run
on the two separated sets of observations with (n — ¢)/2 observations in each. The ¢ omitted
observations separate the low value X’s from the high value X’s, and if heteroskedasticity
exists and is related to X;, the estimates of o2 reported from the two regressions should be
different. Hence, the test statistic is s3/s7 where s} and s3 are the Mean Square Error of the
two regressions, respectively. Their ratio would be the same as that of the two residual sums of
squares because the degrees of freedom of the two regressions are the same. This statistic is F-
distributed with ((n—c)/2) — K degrees of freedom in the numerator as well as the denominator.
The only remaining question for performing this test is the magnitude of c¢. Obviously, the larger
c is, the more central observations are being omitted and the more confident we feel that the
two samples are distant from each other. The loss of ¢ observations should lead to loss of power.
However, separating the two samples should give us more confidence that the two variances
are in fact the same if we do not reject homoskedasticity. This trade off in power was studied
by Goldfeld and Quandt using Monte Carlo experiments. Their results recommend the use of
c = 8 for n = 30 and ¢ = 16 for n = 60. This is a popular test, but assumes that we know
how to order the heteroskedasticity. In this case, using X;. But what if there are more than one
regressor on the right hand side? In that case one can order the observations using Y;.

(3) Spearman’s Rank Correlation Test: This test ranks the X;’s and the absolute value of
the OLS residuals, the e;’s. Then it computes the difference between these rankings, i.e., d; =
rank(|e;|)— rank(X;). The Spearman-Correlation coefficient is r = 1 — [6 3, d?/(n® — n)].
Finally, test Hy; the correlation coefficient between the rankings is zero, by computing ¢ =
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[r2(n — 2)/(1 — r2)]Y/2 which is t-distributed with (n — 2) degrees of freedom. If this ¢-statistic
has a large p-value we do not reject homoskedasticity. Otherwise, we reject homoskedasticity in
favor of heteroskedasticity.

(4) Harvey’s (1976) Multiplicative Heteroskedasticity Test: If heteroskedasticity is re-
lated to X;, it looks like the Goldfeld and Quandt test or the Spearman rank correlation test
would detect it, and the Glejser test would establish its form. In case the form of heteroskedas-
ticity is of the multiplicative type, Harvey (1976) suggests the following test which rewrites
(5.17) as

logei2 = logcf2 + d61logZy; + ... + 6rlogZy; + v; (5.25)

where v; = log(e? /o?). This disturbance term has an asymptotic distribution that is logx?. This
random variable has mean —1.2704 and variance 4.9348. Therefore, Harvey suggests performing

the regression in (5.25) and testing Hp; §1 = do = ... = 0, = 0 by computing the regression
sum of squares divided by 4.9348. This statistic is distributed asymptotically as x2. This is also
asymptotically equivalent to an F-test that tests for §; = d = ... = §, = 0 in the regression

given in (5.25). See the F-test described in example 6 of Chapter 4.

(5) Breusch and Pagan (1979) Test: If one knows that 02 = f(a+b1Z1 +bsZy+ .. +b,.2,)
but does not know the form of this function f, Breusch and Pagan (1979) suggest the following
test for homoskedasticity, i.e., Hy;by = by = ... = b, = 0. Compute 62> = S, €?/n, which
would be the MLE estimator of 02 under homoskedasticity. Run the regression of ¢?/5%on the
Z variables and a constant, and compute half the regression sum of squares. This statistic is
distributed as x2. This is a more general test than the ones discussed earlier in that f does not

have to be specified.

(6) White’s (1980) Test: Another general test for homoskedasticity where nothing is known
about the form of this heteroskedasticity is suggested by White (1980). This test is based on
the difference between the variance of the OLS estimates under homoskedasticity and that
under heteroskedasticity. For the case of a simple regression with a constant, White shows that
this test compares White’s var(ﬁOLS) given by (5.13) with the usual V&I‘(BOLS) =3s2/3 " 22
under homoskedasticity. This test reduces to running the regression of e? on a constant, X;
and Xi2 and computing nR2. This statistic is distributed as x3 under the null hypothesis of
homoskedasticity. The degrees of freedom correspond to the number of regressors without the
constant. If this statistic is not significant, then e? is not related to X; and Xi2 and we can not
reject that the variance is constant. Note that if there is no constant in the regression, we run
e? on a constant and X? only, i.e., X; is no longer in this regression and the degree of freedom
of the test is 1. In general, White’s test is based on running e? on the cross-product of all the
X’s in the regression being estimated, computing nR?, and comparing it to the critical value
of x? where 7 is the number of regressors in this last regression excluding the constant. For the
case of two regressors, Xo and X3 and a constant, White’s test is again based on nR? for the
regression of €? on a constant, Xo, X3, X3, X2 X3, X3. This statistic is distributed as x2. White’s
test is standard using EViews. After running the regression, click on residuals tests then choose
White. This software gives the user a choice between including or excluding the cross-product
terms like X5X3 from the regression. This may be useful when there are many regressors.

A modified Breusch-Pagan test was suggested by Koenker (1981) and Koenker and Bassett
(1982). This attempts to improve the power of the Breusch-Pagan test, and make it more robust
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to the non-normality of the disturbances. This amounts to multiplying the Breusch-Pagan
statistic (half the regression sum of squares) by 234, and dividing it by the second sample
moment of the squared residuals, i.e., .1 (e? — 5%)%/n, where 5° = >, €?/n. Waldman
(1983) showed that if the Z;’s in the Breusch-Pagan test are in fact the X;’s and their cross-
products, as in White’s test, then this modified Breusch-Pagan test is exactly the nR? statistic
proposed by White.

White’s (1980) test for heteroskedasticity without specifying its form lead to further work
on estimators that are more efficient than OLS while recognizing that the efficiency of GLS
may not be achievable, see Cragg (1992). Adaptive estimators have been developed by Carroll
(1982) and Robinson (1987). These estimators assume no particular form of heteroskedasticity
but nevertheless have the same asymptotic distribution as GLS based on the true U%.

Many Monte Carlo experiments were performed to study the performance of these and other
tests of homoskedasticity. One such extensive study is that of Ali and Giaccotto (1984). Six

types of heteroskedasticity specifications were considered;

(i) 0?2 = o? (ii)

(iv) of = o?XF  (v)

o2 =X (i) o? = *E(Y)
0?2 =0’ [E(Y;))* (vi) 0? =0? for i <n/2
and o7 = 202 for i > n/2

Six data sets were considered, the first three were stationary and the last three were nonsta-
tionary (Stationary versus non-stationary regressors, are discussed in Chapter 14). Five models
were entertained, starting with a model with one regressor and no intercept and finishing with
a model with an intercept and 5 variables. Four types of distributions were imposed on the
disturbances. These were normal, ¢, Cauchy and log normal. The first three are symmetric, but
the last one is skewed. Three sample sizes were considered, n = 10, 25,40. Various correlations
between the disturbances were also entertained. Among the tests considered were tests 1, 2, 5
and 6 discussed in this section. The results are too numerous to summarize, but some of the
major findings are the following: (1) The power of these tests increased with sample size and
trendy nature or the variability of the regressors. It also decreased with more regressors and
for deviations from the normal distribution. The results were mostly erratic when the errors
were autocorrelated. (2) There were ten distributionally robust tests using OLS residuals named
TROB which were variants of Glejser’s, White’s and Bickel’s tests. The last one being a non-
parametric test not considered in this chapter. These tests were robust to both long-tailed and
skewed distributions. (3) None of these tests has any significant power to detect heteroskedas-
ticity which deviates substantially from the true underlying heteroskedasticity. For example,
none of these tests was powerful in detecting heteroskedasticity of the sixth kind, i.e., 0? =
o? for i < n/2 and 0? = 202 for i > n/2. In fact, the maximum power was 9%. (4) Ali and
Giaccotto (1984) recommend any of the TROB tests for practical use. They note that the sim-
ilarity among these tests is the use of squared residuals rather than the absolute value of the
residuals. In fact, they argue that tests of the same form that use absolute value rather than

squared residuals are likely to be non-robust and lack power.

Empirical Example: For the Cigarette Consumption Data given in Table 3.2, the OLS regression
yields:

logC = 4.30 — 1.34 logP + 0.17 logY R?=0.27
(0.91)  (0.32) (0.20)
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Figure 5.1 Plots of Residuals versus Log Y

Suspecting heteroskedasticity, we plotted the residuals from this regression versus logY in Figure
5.1. This figure shows the dispersion of the residuals to decrease with increasing logY . Next,
we performed several tests for heteroskedasticity studied in this chapter. The first is Glejser’s
(1969) test. We ran the following regressions:

le;/] = 1.16 — 0.22 logY
(0.46)  (0.10)

le;] = —0.95+ 5.13 (logY)~!
(0.47)  (2.23)

le;| = —2.00 + 4.65 (logY)~%®
(0.93)  (2.04)

le;] = 2.21 — 0.96 (logY)%
(0.93) (0.42)

The t-statistics on the slope coefficient in these regressions are —2.24, 2.30, 2.29 and —2.26,
respectively. All are significant with p-values of 0.03, 0.026, 0.027 and 0.029, respectively, indi-
cating the rejection of homoskedasticity.

The second test is the Goldfeld and Quandt (1965) test. The observations are ordered accord-
ing to logY and ¢ = 12 central observations are omitted. Two regressions are run on the first and
last 17 observations. The first regression yields s = 0.04881 and the second regression yields
s3 = 0.01554. This is a test of equality of variances and it is based on the ratio of two x? ran-
dom variables with 17 — 3 = 14 degrees of freedom. In fact, s7/s3 = 0.04881/0.01554 = 3.141 ~
F1414 under Hy. This has a p-value of 0.02 and rejects Hp at the 5% level. The third test
is the Spearman rank correlation test. First one obtains the rank(logY;) and rank(|e;|) and

compute d; = rank|e;|— rank|logY¥;|. From these r = 1 — [6 S0 a2/ (n® — n)} = —0.282 and
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Table 5.1 White Heteroskedasticity Test

F-statistic 4.127779 Probability 0.004073
Obs*R-squared 15.65644 Probability 0.007897
Test Equation:

Dependent Variable: RESID"2

Method: Least Squares

Sample: 146

Included observations: 46

Variable Coefficient Std. Error t-Statistic Prob.
C 18.22199 5.374060 3.390730 0.0016
LNP 9.506059 3.302570 2.878382 0.0064
LNP"2 1.281141 0.656208 1.952340 0.0579
LNP*LNY ~2.078635 0.727523 -2.857139 0.0068
LNY —7.893179 2.329386 -3.388523 0.0016
LNY"2 0.855726 0.253048 3.381670 0.0016
R-squared 0.340357 Mean dependent var 0.024968
Adjusted R-squared 0.257902 S.D. dependent var 0.034567
S.E. of regression 0.029778 Akaike info criterion —4.068982
Sum squared resid 0.035469 Schwarz criterion —-3.830464
Log likelihood 99.58660 F-statistic 4.127779
Durbin-Watson stat 1.853360 Prob (F-statistic) 0.004073

t=[r?(n —2)/(1 — r2)]"/? = 1.948. This is distributed as a ¢t with 44 degrees of freedom. This
t-statistic has a p-value of 0.058.

The fourth test is Harvey’s (1976) multiplicative heteroskedasticity test which is based upon
regressing log e? on log(log Y;)

loge? = 24.85 — 19.08 log(logY)
(17.25)  (11.03)

Harvey’s (1976) statistic divides the regression sum of squares which is 14.360 by 4.9348. This
yields 2.91 which is asymptotically distributed as x? under the null. This has a p-value of 0.088
and does not reject the null of homoskedasticity at the 5% significance level.

The fifth test is the Breusch and Pagan (1979) test which is based on the regression of €7 /5>
(where 6% = Y719, ¢2/46 = 0.024968) on log Y;. The test-statistic is half the regression sum of
squares = (10.971 + 2) = 5.485. This is distributed as x3 under the null hypothesis. This has a
p-value of 0.019 and rejects the null of homoskedasticity.

Finally, White’s (1980) test for heteroskedasticity is performed which is based on the regres-
sion of e on logP, logY’, (logP)?, (logY)?, (logP)(logY’) and a constant. This is shown in Table
5.1 using EViews. The test-statistic is nR? = (46)(0.3404) = 15.66 which is distributed as x2.
This has a p-value of 0.008 and rejects the null of homoskedasticity. Except for Harvey’s test,
all the tests performed indicate the presence of heteroskedasticity. This is true despite the fact
that the data are in logs, and both consumption and income are expressed in per capita terms.
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Table 5.2 White Heteroskedasticity-Consistent Standard Errors

Dependent Variable: LNC

Method: Least Squares
Sample: 146

Included observations: 46

White Heteroskedasticity-Consistent Standard Errors & Covariance

Variable Coeflicient Std. Error t-Statistic Prob.
C 4.299662 1.095226 3.925821 0.0003
LNP -1.338335 0.343368 -3.897671 0.0003
LNY 0.172386 0.236610 0.728565 0.4702
R-squared 0.303714 Mean dependent var 4.847844
Adjusted R-squared 0.271328 S.D. dependent var 0.191458
S.E. of regression 0.163433 Akaike info criterion -0.721834
Sum squared resid 1.148545 Schwarz criterion —0.602575
Log likelihood 19.60218 F-statistic 9.378101
Durbin-Watson stat 2.315716 Prob (F-statistic) 0.000417

White’s heteroskedasticity-consistent estimates of the variances are as follows:

logC = 4.30 — 1.34 logP + 0.17 logY
(1.10)  (0.34) (0.24)

These are given in Table 5.2 using EViews. Note that in this case all of the heteroskedasticity-
consistent standard errors are larger than those reported using a standard OLS package, but
this is not necessarily true for other data sets.

In section 5.4, we described the Jarque and Bera (1987) test for normality of the disturbances.
For this cigarette consumption regression, Figure 5.2 gives the histogram of the residuals along
with descriptive statistics of these residuals including their mean, median, skewness and kurtosis.

This is done using EViews. The measure of skewness S is estimated to be —0.184 and the
measure of kurtosis « is estimated to be 2.875 yielding a Jarque-Bera statistic of

(—0.184)2 N (2.875 — 3)2

B=4
/ 0 6 24

=0.29.

This is distributed as X% under the null hypothesis of normality and has a p-value of 0.865. Hence
we do not reject that the distribution of the disturbances is symmetric and has a kurtosis of 3.

5.6 Autocorrelation

Violation of assumption 3 means that the disturbances are correlated, i.e., E(u;u;j) = 045 # 0, for
i# j,and ¢,j =1,2,...,n. Since u; has zero mean, E(u;u;j) = cov(u;,u;) and this is denoted by
;5. This correlation is more likely to occur in time-series than in cross-section studies. Consider
estimating the consumption function of a random sample of households. An unexpected event,
like a visit of family members will increase the consumption of this household. However, this
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Series: Residuals
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8 = Observations 46
Mean ~9.90E-16
67 i Median 0.007568
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Kurtosis 2.875020
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Figure 5.2 Normality Test (Jarque-Bera)

positive disturbance need not be correlated to the disturbances affecting consumption of other
randomly drawn households. However, if we were estimating this consumption function using
aggregate time-series data for the U.S.) then it is very likely that a recession year affecting
consumption negatively this year may have a carry over effect to the next few years. A shock
to the economy like an oil embargo in 1973 is likely to affect the economy for several years. A
labor strike this year may affect production for the next few years. Therefore, we will switch
the ¢ and j subscripts to ¢ and s denoting time-series observations ¢,s = 1,2,...,T and the
sample size will be denoted by T rather than n. This covariance term is symmetric, so that
o012 = E(ujug) = E(uguy) = o91. Hence, only T(T — 1)/2 distinct o45’s have to be estimated.
For example, if T' = 3, then 012, 013 and 093 are the distinct covariance terms. However, it is
hopeless to estimate T(T — 1)/2 covariances (o) with only T observations. Therefore, more
structure on these o:s’s need to be imposed. A popular assumption is that the u;’s follow a
first-order autoregressive process denoted by AR(1):

Ut :put,l—i—et t= 1,2,...,T (526)

where ¢ is IID(0,02). It is autoregressive because u; is related to its lagged value u; ;. One
can also write (5.26), for period ¢ — 1, as

Ut—1 = PUt—2 + €—1 (5.27)
and substitute (5.27) in (5.26) to get
U = pPup_o + per—1 + € (5.28)

Note that the power of p and the subscript of u or € always sum to t. By continuous substitution
of this form, one ultimately gets

1

Up = ptuo + ,ot_ €1+ ..+ pe—1 + € (5.29)
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This means that u; is a function of current and past values of ¢ and ug where ug is the initial
value of ug. If ug has zero mean, then u; has zero mean. This follows from (5.29) by taking
expectations. Also, from (5.26)

var(ug) = p*var(u;_1) + var(e;) 4+ 2pcov(us_1, &) (5.30)

Using (5.29), ug—1 is a function of ¢,_1, past values of ¢;_1 and wg. Since ug is independent of the
€’s, and the €’s are themselves not serially correlated, then w;_; is independent of €;. This means
that cov(uy_1,€) = 0. Furthermore, for u; to be homoskedastic, var(u;) = var(u;—1) = o2, and
(5.30) reduces to 02 = p?02 + o2, which when solved for o2 gives:

on =02/(1=p?) (5.31)

Hence, ug ~ (0,02/(1 — p?)) for the u’s to have zero mean and homoskedastic disturbances.
Multiplying (5.26) by u;—1 and taking expected values, one gets

E(usus_1) = pE(ul_y) + E(us_1€;) = po (5.32)

since E(u?_;) = 02 and E(u;_1€¢;) = 0. Therefore, cov(us, us—1) = po?, and the correlation coef-
ficient between u; and u;_1 is correl(us, us—1) = cov(ug, us_1)/~/var(ug)var(ug_1) = po? /a2 = p.
Since p is a correlation coefficient, this means that —1 < p < 1. In general, one can show that

cov(ug, ug) = p'tfs‘oz t,s=1,2,...,T (5.33)

see problem 6. This means that the correlation between u; and u;_, is p”, which is a fraction
raised to an integer power, i.e., the correlation is decaying between the disturbances the further
apart they are. This is reasonable in economics and may be the reason why this autoregressive
form (5.26) is so popular. One should note that this is not the only form that would correlate the
disturbances across time. In Chapter 14, we will consider other forms like the Moving Average
(MA) process, and higher order Autoregressive Moving Average (ARMA) processes, but these
are beyond the scope of this chapter.

Consequences for OLS

How is the OLS estimator affected by the violation of the no autocorrelation assumption among
the disturbances? The OLS estimator is still unbiased and consistent since these properties rely
on assumptions 1 and 4 and have nothing to do with assumption 3. For the simple linear
regression, using (5.2), the variance of 35 g is now

var(Bors) = var(Xi g weur) = Yp ) ST wywscov(ug, us) (5.34)
= o2/l 27+ 3 S wawspltlo?
t#£s

where cov(ug,us) = pl*~*lo? as explained in (5.33). Note that the first term in (5.34) is the
usual variance of EO ¢ under the classical case. The second term in (5.34) arises because of the
correlation between the u;’s. Hence, the variance of OLS computed from a regression package,
ie., 52/ Zt 77 is a wrong estimate of the variance of 60 g for two reasons. First, it is using
the wrong formula for the variance, i.e., 02/ S"/_, x? rather than (5.34). The latter depends on p
through the extra term in (5.34). Second, one can show, see problem 7, that F(s?) # O’i and will
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. . T . . .
2 is not unbiased for o2 and s?/>",_; #7 is a biased estimate of

involve p as well as o2. Hence, s
var(BO 1.¢)- The direction and magnitude of this bias depends on p and the regressor. In fact, if p
is positive, and the x;’s are themselves positively autocorrelated, then s/ 23:1 o7 understates
the true variance of BO 1.s- This means that the confidence interval for 3 is tighter than it should
be and the t-statistic for Hy; § = 0 is overblown, see problem 8. As in the heteroskedastic
case, but for completely different reasons, any inference based on Var(go 1.g) reported from the
standard regression packages will be misleading if the w;’s are serially correlated.

Newey and West (1987) suggested a simple heteroskedasticity and autocorrelation-consistent
covariance matrix for the OLS estimator without specifying the functional form of the serial
correlation. The basic idea extends White’s (1980) replacement of heteroskedastic variances
with squared OLS residuals e by additionally including products of least squares residuals
erer_s for s = 0,41,...,+p where p is the maximum order of serial correlation we are willing to
assume. The consistency of this procedure relies on p being very small relative to the number
of observations 7. This is consistent with popular serial correlation specifications considered
in this chapter where the autocorrelation dies out quickly as j increases. Newey and West
(1987) allow the higher order covariance terms to receive diminishing weights. This Newey-
West option for the least squares estimator is available using EViews. Andrews (1991) warns
about the unreliability of such standard error corrections in some circumstances. Wooldridge
(1991) shows that it is possible to construct serially correlated robust F-statistics for testing
joint hypotheses as considered in Chapter 4. However, these are beyond the scope of this book.

Is OLS still BLUE? In order to determine the BLU estimator in this case, we lag the regression
equation once, multiply it by p, and subtract it from the original regression equation, we get

YQ*PYi—l:a(1*P)+5(Xt*PXt—1)+€t t:2333"'aT (535)

This transformation, known as the Cochrane-Orcutt (1949) transformation, reduces the dis-
turbances to classical errors. Therefore, OLS on the resulting regression renders the estimates
BLU, ie., run Y; = Y; — pY;_1 on a constant and Xy = X; — pXy_1, for t = 2,3,...,T. Note
that we have lost one observation by lagging, and the resulting estimators are BLUE only for
linear combinations of (T — 1) observations in Y.! Prais and Winsten (1954) derive the BLU
estimators for linear combinations of 7' observations in Y. This entails recapturing the initial
observation as follows: (i) Multiply the first observation of the regression equation by /1 — p?;

VI-pYi=aV1- 2+ V1= X1 + V1= pPuy

(ii) add this transformed initial observation to the Cochrane-Orcutt transformed observations
fort = 2,...,T and run the regression on the T observations rather than the (T'—1) observations.
See Chapter 9, for a formal proof of this result. Note that

}71 = \/1 —p2Y1

and
fft:Yt—pY{g,l fort=2,...,T

Similarly, )?1:\/ 1 — p2X7 and )Z't =Xy —pXy_q fort =2,...,T. The constant variable Cy = 1

for t =1,...,T is now a new variable C; which takes the values Ci=v/1— p? and Cy = (1-p)
for t = 2,...,T. Hence, the Prais-Winsten procedure is the regression of Y; on C; and X;
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without a constant. It is obvious that the resulting BLU estimators will involve p and are
therefore, different from the usual OLS estimators except in the case where p = 0. Hence, OLS
is no longer BLUE. Furthermore, we need to know p in order to obtain the BLU estimators.
In applied work, p is not known and has to be estimated, in which case the Prais-Winsten
regression is no longer BLUE since it is based on an estimate of p rather than the true p itself.
However, as long as p is a consistent estimate for p then this is a sufficient condition for the
corresponding estimates of a and (§ in the next step to be asymptotically efficient, see Chapter
9. We now turn to various methods of estimating p.

(1) The Cochrane-Orcutt (1949) Method: This method starts with an initial estimate of
p, the most convenient is 0, and minimizes the residual sum ofA squares in (5.35). This gives us
the OLS estimates of o and 8. Then we substitute dors and Borg in (5.35) and we get

€t — p6t71 —+ €t t = 2, . ,T (536)

where e; denotes the OLS residual. An estimate of p can be obtained by minimizing the residual
sum of squares in (5.36) or running the regression of e; on e;_; without a constant. The resulting
estimate of p is Py = s €t€r-1/ Sty €2 | where both summations run over t = 2,3,...,T.
The second step of the Cochrane-Orcutt procedure (25CO) is to perform the regression in
(5.35) with p,, instead of p. One can iterate this procedure (ITCO) by computing new residuals
based on the new estimates of o and 8 and hence a new estimate of p from (5.36), and so on,
until convergence. Both the 25CO and the ITCO are asymptotically efficient, the argument for
iterating must be justified in terms of small sample gains.

(2) The Hilderth-Lu (1960) Search Procedure: p is between —1 and 1. Therefore, this
procedure searches over this range, i.e., using values of p say between —0.9 and 0.9 in intervals
of 0.1. For each p, one computes the regression in (5.35) and reports the residual sum of squares
corresponding to that p. The minimum residual sum of squares gives us our choice of p and the
corresponding regression gives us the estimates of a, 3 and 2. One can refine this procedure
around the best p found in the first stage of the search. For example, suppose that p = 0.6 gave
the minimum residual sum of squares, one can search next between 0.51 and 0.69 in intervals
of 0.01. This search procedure guards against a local minimum. Since the likelihood in this case
contains p as well as ¢ and « and 3, this search procedure can be modified to maximize the
likelihood rather than minimize the residual sum of squares, since the two criteria are no longer
equivalent. The maximum value of the likelihood will give our choice of p and the corresponding
estimates of «, # and o2.

(3) Durbin’s (1960) Method: One can rearrange (5.35) by moving Y;_1 to the right hand
side, i.e.,

Y, =pYi1 + Oz(l — p) + Xy — pBXi—1 + € (537)

and running OLS on (5.37). The error in (5.37) is classical, and the presence of Y;_; on the
right hand side reminds us of the contemporaneously uncorrelated case discussed under the
violation of assumption 4. For that violation, we have shown that unbiasedness is lost, but not
consistency. Hence, the estimate of p as a coefficient of Y;_; is biased but consistent. This is
the Durbin estimate of p, call it pp. Next, the second step of the Cochrane-Orcutt procedure
is performed using this estimate of p.
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(4) Beach-MacKinnon (1978) Maximum Likelihood Procedure: Beach and MacKinnon
(1978) derived a cubic equation in p which maximizes the likelihood function concentrated with
respect to «, 3, and o2. With this estimate of p, denoted by pg,s, one performs the Prais-
Winsten procedure in the next step.

Correcting for serial correlation is not without its critics. Mizon (1995) argues this point
forcefully in his article entitled “A simple message for autocorrelation correctors: Don’t.” The
main point being that serial correlation is a symptom of dynamic misspecification which is
better represented using a general unrestricted dynamic specification.

Monte Carlo Results

Rao and Griliches (1969) performed a Monte Carlo study using an autoregressive X, and
various values of p. They found that OLS is still a viable estimator as long as |p| < 0.3, but
if |[p| > 0.3, then it pays to perform procedures that correct for serial correlation based on an
estimator of p. Their recommendation was to compute a Durbin’s estimate of p in the first step
and to do the Prais-Winsten procedure in the second step. Maeshiro (1976, 1979) found that
if the X; series is trended, which is usual with economic data, then OLS outperforms 2SCO,
but not the two-step Prais-Winsten (2SPW) procedure that recaptures the initial observation.
These results were confirmed by Park and Mitchell (1980) who performed an extensive Monte
Carlo using trended and untrended X;’s. Their basic findings include the following: (i) For
trended X;’s, OLS beats 2SCO, ITCO and even a Cochrane-Orcutt procedure that is based on
the true p. However, OLS was beaten by 2SPW, iterative Prais-Winsten (ITPW), and Beach-
MacKinnon (BM). Their conclusion is that one should not use regressions based on (7' — 1)
observations as in Cochrane and Orcutt. (ii) Their results find that the ITPW procedure is the
recommended estimator beating 2SPW and BM for high values of true p, for both trended as
well as nontrended X;’s. (iii) Test of hypotheses regarding the regression coefficients performed
miserably for all estimators based on an estimator of p. The results indicated less bias in
standard error estimation for ITPW, BM and 2SPW than OLS. However, the tests based on
these standard errors still led to a high probability of type I error for all estimation procedures.

Testing for Autocorrelation

So far, we have studied the properties of OLS under the violation of assumption 3. We have
derived asymptotically efficient estimators of the coefficients based on consistent estimators of
p and studied their small sample properties using Monte Carlo experiments. Next, we focus on
the problem of detecting this autocorrelation between the disturbances. A popular diagnostic
for detecting such autocorrelation is the Durbin and Watson (1951) statistic?

d=3yler—er1)’/ iy €f (5.38)

If this was based on the true u;’s and T was very large then d can be shown to tend in the limit
as T gets large to 2(1 — p), see problem 9. This means that if p — 0, then d — 2; if p — 1, then
d — 0 and if p — —1, then d — 4. Therefore, a test for Hp; p = 0, can be based on whether d is
close to 2 or not. Unfortunately, the critical values of d depend upon the X;’s, and these vary
from one data set to another. To get around this, Durbin and Watson established upper (dy;)
and lower (dz) bounds for this critical value. Figure 5.3 shows these bounds.
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Figure 5.3 Durbin-Watson Critical Values

It is obvious that if the observed d is less than dy, or larger than 4 — dy, we reject Hy. If
the observed d is between dy and 4 — dy, then we do not reject Hy. If d lies in any of the
two indeterminant regions, then one should compute the exact critical values depending on X;.
Most regression packages report the Durbin-Watson statistic. SHAZAM gives the exact p-value
for this d-statistic. If one is interested in a single sided test, say Hp; p = 0 versus Hy;p > 0 then
one would reject Hy if d < df, and not reject Hy if d > dy. If di, < d < dy, then the test is
inconclusive. Similarly for testing Hy; p = 0 versus Hy;p < 0, one computes (4 — d) and follow
the steps for testing against positive autocorrelation. Durbin and Watson tables for d;, and dy
covered samples sizes from 15 to 100 and a maximum of 5 regressors. Savin and White (1977)
extended these tables for 6 < T < 200 and up to 10 regressors.

The Durbin-Watson statistic has several limitations. We discussed the inconclusive region and
the computation of exact critical values. The Durbin-Watson statistic is appropriate when there
is a constant in the regression. In case there is no constant in the regression, see Farebrother
(1980). Also, the Durbin-Watson statistic is inappropriate when there are lagged values of the
dependent variable among the regressors. We now turn to an alternative test for serial correlation
that does not have these limitations and that is also easy to apply. This test was derived by
Breusch (1978) and Godfrey (1978) and is known as the Breusch-Godfrey test for zero first-order
serial correlation. This is a Lagrange Multiplier test that amounts to running the regression of
the OLS residuals e; on e;_; and the original regressors in the model. The test statistic is T R?.
Its distribution under the null is x2. In this case, the regressors are a constant and X;, and the
test checks whether the coefficient of e;_; is significant. The beauty of this test is that (i) it
is the same test for first-order serial correlation, whether the disturbances are Moving Average
of order one MA(1) or AR(1). (ii) This test is easily generalizable to higher autoregressive or
Moving Average schemes. For second-order serial correlation, like MA(2) or AR(2) one includes
two lags of the residuals on the right hand side; i.e., both e;_; and e;_5. (iii) This test is still
valid even when lagged values of the dependent variable are present among the regressors, see
Chapter 6. The Breusch and Godfrey test is standard using EViews and it prompts the user
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with a choice of the number of lags of the residuals to include among the regressors to test
for serial correlation. You click on residuals, then tests and choose Breusch-Godfrey. Next, you
input the number of lagged residuals you want to include.

In conclusion, we focus on first differencing the data as a possible solution for getting rid
of serial correlation in the errors. Some economic behavioral equations have variables in first
difference form, but other equations are first differenced for estimation purposes. In the latter
case, if the original disturbances were not autocorrelated, (or even correlated, with p # 1), then
the transformed disturbances are serially correlated. After all, first differencing the disturbances
is equivalent to setting p = 1 in uy — puz—1, and this new disturbance uf = u; —uz—1 has u;—;1 in
common with u} | = u;_1 — u;_o, making E(uju} ;) = —FE(u?_;) = —o2. However, one could
argue that if p is large and positive, first differencing the data may not be a bad solution. Rao
and Miller (1971) calculated the variance of the BLU estimator correcting for serial correlation,
for various guesses of p. They assume a true p of 0.2, and an autoregressive Xy

X, =AX;_1 +w;  with A =0,0.4,0.8. (5.39)

They find that OLS (or a guess of p = 0), performs better than first differencing the data,
and is pretty close in terms of efficiency to the true BLU estimator for trended X; (A = 0.8).
However, the performance of OLS deteriorates as A declines to 0.4 and 0, with respect to the true
BLU estimator. This supports the Monte Carlo finding by Rao and Griliches that for |p| < 0.3,
OLS performs reasonably well relative to estimators that correct for serial correlation. However,
the first-difference estimator, i.e., a guess of p = 1, performs badly for trended X; (A = 0.8)
giving the worst efficiency when compared to any other guess of p. Only when the X;’s are
less trended (A = 0.4) or random (A = 0), does the efficiency of the first-difference estimator
improve. However, even for those cases one can do better by guessing p. For example, for A = 0,
one can always do better than first differencing by guessing any positive p less than 1. Similarly,
for true p = 0.6, a higher degree of serial correlation, Rao and Miller (1971) show that the
performance of OLS deteriorates, while that of the first difference improves. However, one can
still do better than first differencing by guessing in the interval (0.4,0.9). This gain in efficiency
increases with trended X;’s.

Empirical Example: Table 5.3 gives the U.S. Real Personal Consumption Expenditures (C)
and Real Disposable Personal Income (Y') from the Economic Report of the President over the
period 1950-1993. This data set is available as CONSUMP.DAT on the Springer web site.

The OLS regression yields:

Cy = —65.80+ 0.916 Y; + residuals
(90.99)  (0.009)

Figure 5.4 plots the actual, fitted and residuals using EViews. This shows positive serial corre-
lation with a string of positive residuals followed by a string of negative residuals followed by
positive residuals. The Durbin-Watson statistic is d = 0.461 which is much smaller than the
lower bound dj, = 1.468 for T' = 44 and one regressor. Therefore, we reject the null hypothesis
of Hy;p =0 at the 5% significance level.

Regressing OLS residuals on their lagged values yields

e; = 0.792 e;_1 + residuals
(0.106)



Table 5.3 U.S. Consumption Data, 1950-1993

C = Real Personal Consumption Expenditures (in 1987 dollars)
Y = Real Disposable Personal Income (in 1987 dollars)

YEAR Y C YEAR Y C
1950 6284 5820 1972 10414 9425
1951 6390 5843 1973 11013 9752
1952 6476 5917 1974 10832 9602
1953 6640 6054 1975 10906 9711
1954 6628 6099 1976 11192 10121
1955 6879 6325 1977 11406 10425
1956 7080 6440 1978 11851 10744
1957 7114 6465 1979 12039 10876
1958 7113 6449 1980 12005 10746
1959 7256 6658 1981 12156 10770
1960 7264 6698 1982 12146 10782
1961 7382 6740 1983 12349 11179
1962 7583 6931 1984 13029 11617
1963 7718 7089 1985 13258 12015
1964 8140 7384 1986 13552 12336
1965 8508 7703 1987 13545 12568
1966 8822 8005 1988 13890 12903
1967 9114 8163 1989 14005 13029
1968 9399 8506 1990 14101 13093
1969 9606 8737 1991 14003 12899
1970 9875 8842 1992 14279 13110
1971 10111 9022 1993 14341 13391

Source: Economic Report of the President
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The second step of the Cochrane-Orcutt (1949) procedure based on p = 0.792 yields the follow-
ing regression:

(Cy —0.792C;_1) = 168.49 + 0.926 (Y; —0.792Y;_1) + residuals

and the regression estimates are given by

(301.7)

(0.027)
The two-step Prais-Winsten (1954) procedure yields ppy, = 0.707 with standard error (0.110)

Cy =—52.634+ 0.917 Y; 4+ residuals

(181.9)

(0.017)

Iterative Prais-Winsten yields

—48.40 4+ 0.916 Y; + residuals

Cy

(191.1)

(0.018)

The Maximum-Likelihood procedure yields p;;,r = 0.788 with standard error (0.11) and the
resulting estimates are given by

Cy =—24.82 + 0.915 Y; + residuals

(233.5)

(0.022)
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Figure 5.4 Consumption and Disposable Income
Table 5.4 Breusch-Godfrey LM Test
F-statistic 53.45697 Probability 0.00000
Obs*R-squared 24.90136 Probability 0.000001
Test Equation:
Dependent Variable: RESID
Method: Least Squares
Presample missing value lagged residuals set to zero
Variable Coefficient Std. Error t-Statistic Prob.
C -31.12035 60.82348 —-0.511650 0.6116
Y 0.003641 0.005788 0.629022 0.5328
RESID(-1) 0.800205 0.109446 7.311428 0.0000
R-squared 0.565940 Mean dependent var 9.83E-13
Adjusted R-squared 0.544766 S.D. dependent var 151.8049
S.E. of regression 102.4243 Akaike info criterion 12.16187
Sum squared resid 430120.2 Schwarz criterion 12.28352
Log likelihood —264.5612 F-statistic 26.72849
Durbin-Watson stat 1.973552 Prob (F-statistic) 0.000000
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Table 5.5 Newey-West Standard Errors

Dependent Variable: CONSUM
Method: Least Squares
Sample: 1950 1993
Included observations: 44

Newey-West HAC Standard Errors & Covariance (lag truncation=3)

Variable Coefficient Std. Error t-Statistic Prob.
C —65.79582 133.3454 —0.493424 0.6243
Y 0.915623 0.015458 59.23190 0.0000
R-squared 0.996267 Mean dependent var 9250.545
Adjusted R-squared 0.996178 S.D. dependent var 2484.624
S.E. of regression 153.6015 Akaike info criterion 12.95099
Sum squared resid 990923.1 Schwarz criterion 13.03209
Log likelihood —282.9218 F-statistic 11209.21
Durbin-Watson stat 0.460778 Prob (F-statistic) 0.000000

Durbin’s (1960) Method yields the following regression
Cy= 080 Cy_1— 40.79 + 0.72 Y;— 0.53 Y;_; + residuals
(0.10) (59.8)  (0.09) (0.13)
Therefore, Durbin’s estimate of p is given by pp = 0.80.
The Breusch (1978) and Godfrey (1978) regression that tests for first-order serial correlation
is given in Table 5.4.
This yields
e; =—31.12+ 0.004 Y; + 0.800 e;_71 + residuals
(60.82) (0.006)  (0.109)

The test statistic is TR? which yields 43 x (0.565) = 24.9. This is distributed as x? under Ho;
p = 0. This rejects the null hypothesis of no serial correlation with a p-value of 0.000001 shown
in Table 5.4. The Newey-West heteroskedasticity and autocorrelation-consistent standard errors
for least squares with a three-year lag truncation are given by

Cy = —65.804+ 0.916 Y; + residuals
(133.3) (0.015)

This is given in Table 5.5 using EViews. Note that both standard errors are now larger than
those reported by least squares. But once again, this is not necessarily the case for other data
sets.

Notes

1. A computational warning is in order when one is applying the Cochrane-Orcutt transformation
to cross-section data. Time-series data has a natural ordering which is generally lacking in cross-
section data. Therefore, one should be careful in applying the Cochrane-Orcutt transformation to
cross-section data since it is not invariant to the ordering of the observations.
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2. Another test for serial correlation can be obtained as a by-product of maximum likelihood estima-

tion. The maximum likelihood estimator of p has a normal limiting distribution with mean p and
variance (1 — p?)/T. Hence, one can compute py 7 5/[(1 — pryrp)/T]/2and compare it to critical
values from the normal distribution.

Problems
1. For the simple linear regression with heteroskedasticity, i.e., E(u?) = o2, show that E(s?) is a
function of the 02’s?
2. For the simple linear regression with heteroskedasticity of the form E(u?) = 02 = ba? where b > 0,
show that E(s?/ > i, 27) understates the variance of 8¢ which is
i x?“?/(Z?:l z3)?.
3. Weighted Least Squares. This is based on Kmenta (1986).
(a) Solve the two equations in (5.11) and show that the solution is given by (5.12).
(b) Show that
@) - S (1/0?)
(i X7 /of i (1 o?)] = 2 (Xa /o))
— Z?:l wy
(i wi X)) (i wi) — (305, wi Xi)?
_ 1
a Z?=1 wy (X; — X*)?
where w} = (1/0?) and X* = Y"1 wiX;/ >0 w}.
4. Relative Efficiency of OLS Under Heteroskedasticity. Consider the simple linear regression with
heteroskedasticity of the form o2 = or2X;S where X; =1,2,...,10.
(a) Compute V&r(ﬁOLS) for 6 =0.5,1,1.5 and 2.
(b) Compute var(EBLUE) for § =0.5,1,1.5 and 2.
(c) Compute the efficiency of gOLS = var(BBLUE)/var(@OLS) for 6 = 0.5,1,1.5 and 2. What
happens to this efficiency measure as § increases?
5. Consider the simple regression with only a constant y; = a + u; for ¢ = 1,2,...,n; where the
u;’s are independent with mean zero and var(u;) = o? for i = 1,2,...,n1; and var(u;) = o3 for
i=n1+1,...,n1 +ng with n =ny + ns.

(a) Derive the OLS estimator of « along with its mean and variance.
(b) Derive the GLS estimator of « along with its mean and variance.

(c) Obtain the relative efficiency of OLS with respect to GLS. Compute their relative efficiency
for various values of 03 /0% = 0.2,0.4,0.6,0.8,1,1.25,1.33,2.5, 5; and n1 /n = 0.2,0.3,0.4,.. .,
0.8. Plot this relative efficiency.

(d) Assume that u; is N(0,0%) for i = 1,2,...,ny; and N(0,0%) fori =ny+1,...,n1 +ng; with
u;’s being independent. What is the maximum likelihood estimator of a, o3 and 037

(e) Derive the LR test for testing Ho;o? = o2 in part (d).
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. Show that for an AR(1) model given in (5.26), E(usu,) = p/*=*lo2 for t,s =1,2,...,T.

. Relative Efficiency of OLS Under the AR(1) Model. This problem is based on Johnston (1984, pp.
310-312). For the simple regression without a constant y; = Sy + u; with wy = pus_1 + € and
€ ~ 1ID(0, 02)

(a) Show that

2 T-1 T—2
-~ o T _1 T+
var(Boys) . <1+2pzt_1 T4 +2p22t_1 0142

T2 T2 T2
D=1 T D=1 T D=1
—1_T1Zr
+o2p T
2= T
t=1Tt
and that the Prais-Winsten estimator 3 pw has variance

0.2

u 1- p2 :|
T T—1 T
D=1 xf [14p2-2p Doim1 TeTey1/ D x7

These expressions are easier to prove using matrix algebra, see Chapter 9.

Var(BPW) =

(b) Let =, itself follow an AR(1) scheme with parameter A, i.e., x; = Axy—1 + v, and let T — oc.
Show that

var(B pw) _ 1-p?
T—covar(Bors) (14 p% —=2pA)(1 +2p\ + 20207 +..)

(1-p*)(1-pN)
1+ p2—2p0)(1 + pN)

asy CE(BOLS) =

(c) Tabulate this asy eﬂ(@OLs) for various values of p and A where p varies between —0.9 to
+0.9 in increments of 0.1, while X varies between 0 and 0.9 in increments of 0.1. What do you
conclude? How serious is the loss in efficiency in using OLS rather than the PW procedure?

(d) Ignoring this autocorrelation one would compute o2 / Zthl x? as the var(ﬁo rs)- The differ-
ence between this wrong formula and that derived in part (a) gives us the bias in estimating
the variance of Eo s~ Show that as T' — oo, this asymptotic proportionate bias is given by
—2p\/(1 + pA). Tabulate this asymptotic bias for various values of p and A as in part (c).
What do you conclude? How serious is the asymptotic bias of using the wrong variances for
Bors when the disturbances are first-order autocorrelated?

(e) Show that

T—-1 T—2
2y = 2 Zt:l TtTt4+1 2Zt:1 TtTi42
t=1"1 t=1t

1 T1xT
+...+2p" 17>}/(T— 1)
Zf:lz?

Conclude that if p = 0, then E(s?) = o2. If z, follows an AR(1) scheme with parameter A,
then for a large T', we get

B(s?) = o2 (T— igi) /(T —1)

Compute this F(s?) for T = 101 and various values of p and A as in part (c). What do you
conclude? How serious is the bias in using s? as an unbiased estimator for o2?
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8. For the AR(1) model given in (5.26), show that if p > 0 and the z;’s are positively autocorrelated
that E(s?/ Y 2?) understates the var(Bp;g) given in (5.34).

9. Show that for the AR(1) model, the Durbin-Watson statistic has plimd — 2(1 — p).
10. Regressions with Non-Zero Mean Disturbances. Consider the simple regression with a constant
Yi=a+0X;+u;, i=1,2,....n

where o and (3 are scalars and u; is independent of the X;’s. Show that:

(a) If the u;’s are independent and identically gamma distributed with f(u;) = ﬁuffle*"i

2

where u; > 0 and 6 > 0, then @prs — s* is unbiased for a.

(b) If the u;’s are independent and identically x? distributed with v degrees of freedom, then
Qors — s2/2 is unbiased for a.

(¢) If the w;’s are independent and identically exponentially distributed with f(u;) = %e
where u; > 0 and 6 > 0, then @prs — s is consistent for a.

11. The Heteroskedastic Consequences of an Arbitrary Variance for the Initial Disturbance of an AR(1)
Model. This is based on Baltagi and Li (1990, 1992). Consider a simple AR(1) model

w=pu_1+e t=12....T |p<1
with €; ~ IID(0, 02) independent of uo ~ (0,02/7), and 7 is an arbitrary positive parameter.

(a) Show that this arbitrary variance on the initial disturbance ug renders the disturbances, in
general, heteroskedastic.

(b) Show that var(u¢) = o2 is increasing if 7 > (1 — p?) and decreasing if 7 < (1 — p?). When is
the process homoskedastic?

(c) Show that cov(u;, us—s) = p*oz_, for t > s. Hint: See the solution by Kim (1991).

(d) Consider the simple regression model
yt:ﬁwt—&—ut t:1727T

with wu; following the AR(1) process described above. Consider the common case where
p > 0 and the z;’s are positively autocorrelated. For this case, it is a standard result that
the var(B5.¢) is understated under the stationary case (i.e., (1 — p?) = 7), see problem 8.
This means that OLS rejects too often the hypothesis Hy; 8 = 0. Show that OLS will reject
more often than the stationary case if 7 < 1 — p? and less often than the stationary case if
7> (1 — p?). Hint: See the solution by Koning (1992).

12. ML Estimation of Linear Regression Model with AR(1) Errors and Two Observations. This is
based on Magee (1993). Consider the regression model y; = 2;03 + u;, with only two observations
i = 1,2, and the nonstochastic |z1| # |z2| are scalars. Assume that u; ~ N(0,0?%) and ug = puj +€
with |p| < 1. Also, € ~ N0, (1 — p?)o?] where € and u; are independent.

(a) Show that the OLS estimator of 3 is (z1y1 + T2y2)/(z3 + 23).

(b) Show that the ML estimator of 3 is (z1y1 — z2y2)/(2? — 23).

(c) Show that the ML estimator of p is 2z122/(z? + 23) and thus is nonstochastic.

(d) How do the ML estimates of 3 and p behave as 1 — z3 and 1 — —x27 Assume x2 # 0.

Hint: See the solution by Baltagi and Li (1995).

13. For the empirical example in section 5.5 based on the Cigarette Consumption Data in Table 3.2.
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Replicate the OLS regression of logC' on logP, logY and a constant. Plot the residuals versus
logY and verify Figure 3.2.

Run Glejser’s (1969) test by regressing |e;| the absolute value of the residuals from part (a),
on (logY;)® for § = 1,—1,—0.5 and 0.5. Verify the t-statistics reported in the text.

Run Goldfeld and Quandt’s (1965) test by ordering the observations according to logY; and
omitting 12 central observations. Report the two regressions based on the first and last 17
observations and verify the F-test reported in the text.

Verify the Spearman rank correlation test based on the rank (logY;) and rank |e;|.

Verify Harvey’s (1976) multiplicative heteroskedasticity test based on regressing loge? on
log(logYj).

Run the Breusch and Pagan (1979) test based on the regression of €2/ on logY;, where
~2 46 o

oT=>",¢€;/46.

Run White’s (1980) test for heteroskedasticity.

Run the Jarque and Bera (1987) test for normality of the disturbances.

Compute White’s (1980) heteroskedasticity robust standard errors for the regression in part

(a).

14. A Simple Linear Trend Model with AR(1) Disturbances. This is based on Kramer (1982).

(a)

(d)

Consider the following simple linear trend model
Yi=a+ 8, +w

where u; = pus_1 + ¢ with |p| < 1, ¢ ~ IID(0,0?) and var(u;) = 02 = 02/(1 — p?). Our
interest is focused on the estimates of the trend coefficient, 3, and the estimators to be
considered are OLS, CO (assuming that the true value of p is known), the first-difference
estimator (FD), and the Generalized Least Squares (GLS), which is Best Linear Unbiased
(BLUE) in this case.

In the context of the simple linear trend model, the formulas for the variances of these
estimators reduce to

V(OLS) =1202{—6p" T (T —1)p — (T + 1)]> — (T3 - T)p*
+2(T? = 1)(T — 3)p® + 12(T? + 1)p? — 2(T? — 1)(T + 3)p
HT®-T)}/(1—p*) (1= p)*(T° = T)?

V(CO) =120%(1 — p)*(T3 — 3T? +27),

V(FD) =20%(1—p"1)/(1-p)(T 1)

V(GLS) =120%/(T — 1)[(T —3)(T —2)p* — 2(T — 3)(T — 1)p + T(T + 1)].

Compute these variances and their relative efficiency with respect to the GLS estimator for

T = 10,20, 30,40 and p between —0.9 and 0.9 in 0.1 increments.

For a given T, show that the limit of var(OLS)/var(CO) is zero as p — 1. Prove that

var(FD) and var(GLS) both tend in the limit to ¢2/(T — 1) < oo as p — 1. Conclude

that var(GLS)/var(FD) tend to 1 as p — 1. Also, show that linll[var(GLS)/var(OLS)] =
p—

5(I%+1T)/6(T%+ 1) < 1 provided T > 3.

For a given p, show that var(F D) = O(T~2) whereas the variance of the remaining estimators
is O(T~2). Conclude that Tlim [var(F'D)/var(CO)] = oo for any given p.

15. Consider the empirical example in section 5.6, based on the Consumption-Income data in Table
5.3. Obtain this data set from the CONSUMP.DAT file on the Springer web site.
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(a) Replicate the OLS regression of Cy on Y; and a constant, and compute the Durbin-Watson
statistic. Test Ho; p = 0 versus Hy; p > 0 at the 5% significance level.

(b) Perform the Cochrane-Orcutt procedure and verify the regression results in the text.

(c) Perform the two-step Prais-Winsten procedure and verify the regression results in the text.
Iterate on the Prais-Winsten procedure.

(d) Perform the maximum likelihood procedure and verify the results in the text.

(e) Perform Durbin’s regression and verify the results in the text.

(f) Test for first-order serial correlation using the Breusch and Godfrey test.

(g) Compute the Newey-West heteroskedasticity and autocorrelation-consistent standard errors

for the least squares estimates in part (a).
Benderly and Zwick (1985) considered the following equation
RSy = a+ BQit1 + 7P + 1wy

where RS; = the real return on stocks in year ¢, QQ¢+1 = the annual rate of growth of real GNP
in year t + 1, and P; = the rate of inflation in year t. The data is provided on the Springer web
site and labeled BENDERLY.ASC. This data covers 31 annual observations for the U.S. over the
period 1952-1982. This was obtained from Lott and Ray (1991). This equation is used to test the
significance of the inflation rate in explaining real stock returns. Use the sample period 1954-1976
to answer the following questions:

(a) Run OLS to estimate the above equation. Remember to use Q1. Is P significant in this
equation? Plot the residuals against time. Compute the Newey-West heteroskedasticity and
autocorrelation-consistent standard errors for these least squares estimates.

(b) Test for serial correlation using the D.W. test.

(¢) Would your decision in (b) change if you used the Breusch-Godfrey test for first-order serial
correlation?

(d) Run the Cochrane-Orcutt procedure to correct for first-order serial correlation. Report your
estimate of p.

(e) Run a Prais-Winsten procedure accounting for the first observation and report your estimate

of p. Plot the residuals against time.

Using our cross-section Energy /GDP data set in Chapter 3, problem 3.16 consider the following
two models:

Model 1: logEn = a+ BlogRGDP + u
Model 2: En=a+ BRGDP +v

Make sure you have corrected the W. Germany observation on EN as described in problem 3.16
part (d).

(a) Run OLS on both Models 1 and 2. Test for heteroskedasticity using the Goldfeldt/Quandt
Test. Omit ¢ = 6 central observations. Why is heteroskedasticity a problem in Model 2, but
not Model 1?7

) For Model 2, test for heteroskedasticity using the Glejser Test.
(c) Now use the Breusch-Pagan Test to test for heteroskedasticity on Model 2.
(d) Apply White’s Test to Model 2.
)

Do all these tests give the same decision?



18.

19.

20.

Problems 125

(f) Propose and estimate a simple transformation of Model 2, assuming heteroskedasticity of
the form o? = ¢2RGDP2.

(g) Propose and estimate a simple transformation of Model 2, assuming heteroskedasticity of
the form o? = o%(a + bRGDP)?.

(h) Now suppose that heteroskedasticity is of the form 02 = 02RGDP?Y where v is an unknown

parameter. Propose and estimate a simple transformation for Model 2. Hint: You can write
o? as exp{a + 7logRGD P} where a = logo?.

(i) Compare the standard errors of the estimates for Model 2 from OLS, also obtain White’s
heteroskedasticity-consistent standard errors. Compare them with the simple Weighted Least
Squares estimates of the standard errors in parts (f), (g) and (h). What do you conclude?

You are given quarterly data from the first quarter of 1965 (1965.1) to the fourth quarter of 1983
(1983.4) on employment in Orange County California (EMP) and real gross national product
(RGNP). The data set is in a file called ORANGE.DAT on the Springer web site.

(a) Generate the lagged variable of real GNP, call it RGN P;_; and estimate the following model
by OLS: EM P, = a+ BRGN P,_1 + uy.

(b) What does inspection of the residuals and the Durbin-Watson statistic suggest?

(c) Assuming u; = pus_1 + € where |p| < 1 and ¢ ~ IIN(0,02), use the Cochrane-Orcutt
procedure to estimate p, @ and 3. Compare the latter estimates and their standard errors
with those of OLS.

(d) The Cochrane-Orcutt procedure omits the first observation. Perform the Prais-Winsten ad-
justment. Compare the resulting estimates and standard error with those in part (c).

(e) Apply the Breusch-Godfrey test for first and second order autoregression. What do you
conclude?

(f) Compute the Newey-West heteroskedasticity and autocorrelation-consistent covariance stan-
dard errors for the least squares estimates in part (a).

Consider the earning data underlying the regression in Table 4.1 and available on the Springer
web site as EARN.ASC.

(a) Apply White’s test for heteroskedasticity to the regression residuals.
(b) Compute White’s heteroskedasticity-consistent standard errors.

(c) Test the least squares residuals for normality using the Jarque-Bera test.

Harrison and Rubinfield (1978) collected data on 506 census tracts in the Boston area in 1970 to
study hedonic housing prices and the willingness to pay for clean air. This data is available on the
Springer web site as HEDONIC.XLS. The dependent variable is the Median Value (MV) of owner-
occupied homes. The regressors include two structural variables, RM the average number of rooms,
and AGE representing the proportion of owner units built prior to 1940. In addition there are eight
neighborhood variables: B, the proportion of blacks in the population; LSTAT, the proportion of
population that is lower status; CRIM, the crime rate; ZN, the proportion of 25000 square feet
residential lots; INDUS, the proportion of nonretail business acres; TAX, the full value property
tax rate ($/$10000); PTRATIO, the pupil-teacher ratio; and CHAS represents the dummy variable
for Charles River: = 1 if a tract bounds the Charles. There are also two accessibility variables, DIS
the weighted distances to five employment centers in the Boston region, and RAD the index of
accessibility to radial highways. One more regressor is an air pollution variable NOX, the annual
average nitrogen oxide concentration in parts per hundred million.

(a) Run OLS of MV on the 13 independent variables and a constant. Plot the residuals.
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(b) Apply White’s tests for heteroskedasticity.
(c) Obtain the White heteroskedasticity-consistent standard errors.

(d) Test the least squares residuals for normality using the Jarque-Bera test.
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CHAPTER 6
Distributed Lags and Dynamic Models

6.1 Introduction

Many economic models have lagged values of the regressors in the regression equation. For
example, it takes time to build roads and highways. Therefore, the effect of this public investment
on growth in GNP will show up with a lag, and this effect will probably linger on for several
years. It takes time before investment in research and development pays off in new inventions
which in turn take time to develop into commercial products. In studying consumption behavior,
a change in income may affect consumption over several periods. This is true in the permanent
income theory of consumption, where it may take the consumer several periods to determine
whether the change in real disposable income was temporary or permanent. For example, is
the extra consulting money earned this year going to continue next year? Also, lagged values
of real disposable income appear in the regression equation because the consumer takes into
account his life time earnings in trying to smooth out his consumption behavior. In turn, one’s
life time income may be guessed by looking at past as well as current earnings. In other words,
the regression relationship would look like

Vi=a+ Xt + 61 X1+ + B, Xp—s +ue t=1,2,...,T (6.1)

where Y; denotes the ¢-th observation on the dependent variable Y and X;_, denotes the (¢-s)th
observation on the independent variable X. « is the intercept and 3, 34, ..., 3, are the current
and lagged coefficients of X;. Equation (6.1) is known as a distributed lag since it distributes the
effect of an increase in income on consumption over s periods. Note that the short-run effect of
a unit change in X on Y is given by (,, while the long-run effect of a unit change in X on Y
is (Bo + By + - + Bs).

Suppose that we observe X; from 1955 to 1995. X;_; is the same variable but for the previous
period, i.e., 1954-1994. Since 1954 is not observed, we start from 1955 for X;_1, and end at 1994.
This means that when we lag once, the current X; series will have to start at 1956 and end at
1995. For practical purposes, this means that when we lag once we loose one observation from
the sample. So if we lag s periods, we loose s observations. Furthermore, we are estimating
one extra 0 with every lag. Therefore, there is double jeopardy with respect to loss of degrees
of freedom. The number of observations fall (because we are lagging the same series), and the
number of parameters to be estimated increase with every lagging variable introduced. Besides
the loss of degrees of freedom, the regressors in (6.1) are likely to be highly correlated with each
other. In fact most economic time series are usually trended and very highly correlated with
their lagged values. This introduces the problem of multicollinearity among the regressors and
as we saw in Chapter 4, the higher the multicollinearity among these regressors, the lower is
the reliability of the regression estimates.

In this model, OLS is still BLUE because the classical assumptions are still satisfied. All we
have done in (6.1) is introduce the additional regressors (X;_1,...,X;—s). These regressors are
uncorrelated with the disturbances since they are lagged values of X}, which are by assumption
not correlated with u; for every t.
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In order to reduce the degrees of freedom problem, one could impose more structure on the §’s.
One of the simplest forms imposed on these coefficients is the linear arithmetic lag, (see Figure
6.1), which can be written as

Gi=[(s+1)—i]B8 fori=0,1,...,s (6.2)

The lagged coefficients of X follow a linear distributed lag declining arithmetically from (s+1)43
for X; to 8 for X;_s. Substituting (6.2) in (6.1) one gets

Vi=a+3 i oBiXimitw=a+B3ol(s+1)—idXii+wu (6.3)
where the latter equation can be estimated by the regression of Y; on a constant and Z;, where
Zy =320 olls + 1) — i Xees

This Z; can be calculated given s and X;. Hence, we have reduced the estimation of 8y, 8y, ..., B,
into the estimation of just one 3. Once ﬁ is obtained, ﬁ can be deduced from (6.2), for i =
0,1,...,s. Despite its simplicity, this lag is too restrictive to impose on the regression and is
not usually used in practice.

Alternatively, one can think of 3; = f(i) for i = 0,1,...,s. If f(i) is a continuous function,
over a closed interval, then it can be approximated by an r-th degree polynomial,

fl@)=ap+ari+...+ai"
For example, if r = 2, then

@-zao—i—ali—&—agza fori=0,1,2,...,s
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so that
By = ao
B1 = ap+al+az
ﬁQ = ag+ 2a1 + 4as
Bs = aop+sa;+ s2as
Once ap, a1, and as are estimated, By, 34,...,83, can be deduced. In fact, substituting 8, =

ag + a1i + agi? in (6.1) we get

Y, = a4+ (ao+ari+ agiQ)Xt_i + up (6.4)
= atag o Ximi+a1 Y oiXe—i+asd i o i? X+

This last equation, shows that «, ag, a1 and as can be estimated from the regression of Y;
on a constant, Zo = > i o Xy—i, Z1 = Y ;_iX¢—; and Zy = Y ;_,i?X;_;. This procedure was
proposed by Almon (1965) and is known as the Almon lag. One of the problems with this
procedure is the choice of s and 7, the number of lags on Xy, and the degree of the polynomial,
respectively. In practice, neither is known. Davidson and MacKinnon (1993) suggest starting
with a maximum reasonable lag s* that is consistent with the theory and then based on the
unrestricted regression, given in (6.1), checking whether the fit of the model deteriorates as s*
is reduced. Some criteria suggested for this choice include: (i) maximizing R?; (ii) minimizing
Akaike’s (1973) Information Criterion (AIC) with respect to s. This is given by AIC(s) =
(RSS/T)e?s/T; or (iil) minimizing Schwarz (1978) Bayesian Information Criterion (BIC) with
respect to s. This is given by BIC(s) = (RSS/T)T*/T where RSS denotes the residual sum
of squares. Note that the AIC and BIC criteria, like R?, reward good fit but penalize loss
of degrees of freedom associated with a high value of s. These criteria are printed by most
regression software including SHAZAM, EViews and SAS. Once the lag length s is chosen it is
straight forward to determine r, the degree of the polynomial. Start with a high value of r and
construct the Z variables as described in (6.4). If r = 4 is the highest degree polynomial chosen
and a4, the coefficient of Z, = Z?:o i*X,_4 is insignificant, drop Z; and run the regression for
r = 3. Stop, if the coefficient of Z3 is significant, otherwise drop Z3 and run the regression for
r=2.

Applied researchers usually impose end point constraints on this Almon lag. A near end
point constraint means that §_; = 0 in equation (6.1). This means that for equation (6.4),
this constraint yields the following restriction on the second degree polynomial in a’s: f_; =
f(=1) = ag — a1 + az = 0. This restriction allows us to solve for ag given a; and as. In fact,
substituting ag = a1 — ag into (6.4), the regression becomes

Yi=a+ al(Zl + Z()) + a2(22 — Zo) + ug (65)

and once aj and ag are estimated, ag is deduced, and hence the 3;’s. This restriction essentially
states that X;y1 has no effect on Y;. This may not be a plausible assumption, especially in our
consumption example, where income next year enters the calculation of permanent income or
life time earnings. A more plausible assumption is the far end point constraint, where 3,,; = 0.
This means that X; (,,q) does not affect Y;. The further you go back in time, the less is the
effect on the current period. All we have to be sure of is that we have gone far back enough
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to reach an insignificant effect. This far end point constraint is imposed by removing X;_ (1)
from the equation as we have done above. But, some researchers impose this restriction on
B; = f(i), i.e., by restricting 8,,; = f(s+ 1) = 0. This yields for r = 2 the following constraint:
ap+(s+1)a; +(s+1)%az = 0. Solving for ag and substituting in (6.4), the constrained regression
becomes

Yi=a+a1[Z; — (s +1)Z] + az[Za — (s + 1)2Zo] + uy (6.6)

One can also impose both end point constraints and reduce the regression into the estimation
of one a rather than three a’s. Note that 3_; = 8,,1 = 0 can be imposed by not including
Xi+1 and X;_(,11) in the regression relationship. However, these end point restrictions impose
the additional restrictions that the polynomial on which the a’s lie should pass through zero at
i=—1and i = (s+ 1), see Figure 6.2.

These additional restrictions on the polynomial may not necessarily be true. In other words,
the polynomial could intersect the X-axis at points other than —1 or (s + 1). Imposing a
restriction, whether true or not, reduces the variance of the estimates, and introduces bias if the
restriction is untrue. This is intuitive, because this restriction gives additional information which
should increase the reliability of the estimates. The reduction in variance and the introduction of
bias naturally lead to Mean Square Error criteria that help determine whether these restrictions
should be imposed, see Wallace (1972). These criteria are beyond the scope of this chapter. In
general, one should be careful in the use of restrictions that may not be plausible or even valid. In
fact, one should always test these restrictions before using them. See Schmidt and Waud (1975).

Empirical Example: Using the Consumption-Income data from the Economic Report of the
President over the period 1950-1993, given in Table 5.1, we estimate a consumption-income
regression imposing a five year lag on income. In this case, all variables are in logs and s =5
in equation (6.1). Table 6.1 gives the SAS output imposing the linear arithmetic lag given in
equation (6.2).

Note that the SAS output reports 3 = 0.047 as the coefficient of Y;_5 which is denoted by
YLAGS. This is statistically significant with a t-value of 83.1. Note that the coefficient of Y;_4
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Table 6.1 Regression with Arithmetic Lag Restriction

Dependent Variable: C
Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 1 2.30559 2.30559 6902.791 0.0001
Error 37 0.01236 0.00033
C Total 38 2.31794
Root MSE 0.01828 R-square 0.9947
Dep Mean 9.14814 Adj R-sq 0.9945
C.V. 0.19978

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 0.095213 0.10900175 0.873 0.3880
Y 1 0.280795 0.00337969 83.083 0.0001
YLAG1 1 0.233996 0.00281641 83.083 0.0001
YLAG2 1 0.187197 0.00225313 83.083 0.0001
YLAG3 1 0.140398 0.00168985 83.083 0.0001
YLAG4 1 0.093598 0.00112656 83.083 0.0001
YLAGH 1 0.046799 0.00056328 83.083 0.0001
RESTRICT -1 0.007218 0.00184780 3.906 0.0004
RESTRICT -1 0.000781 0.00123799 0.631 0.5319
RESTRICT -1 —0.003911 0.00127903 -3.058 0.0041
RESTRICT -1 —0.005374 0.00188105 —2.857 0.0070
RESTRICT 1 0.005208 0.00261513 1.991 0.0539

which is denoted by YLAGA4 is 25, and so on. The coefficient of Y; is given by GB = 0.281.
At the bottom of the regression output, SAS tests each one of these five coefficient restrictions
individually. We can see that three of these restrictions are rejected at the 5% level. One can
test the arithmetic lag restrictions jointly using an F-test. The Unrestricted Residual Sum
of Squares (URSS) is obtained by regressing C; on Y;, Y;_q,...,Y;_5 and a constant. This
yields URSS = 0.00667. The RRSS is given in Table 6.1 as 0.01236 and it involves imposing 5
restrictions given in (6.2). Therefore,

(0.01236 — 0.00667) /5

F =
0.00667/32

= 5.4597

and this is distributed as F5 32 under the null hypothesis. The observed F-statistic has a p-value
of 0.001 and we reject the linear arithmetic lag restrictions.

Next we impose an Almon lag based on a second degree polynomial as described in equation
(6.4). Table 6.2 reports the SAS output for s = 5 imposing the near end point constraint. In this
case, the estimated regression coefficients rise and then fall: Bo = 0.193, El =0.299,... ,35 =
—0.159. Only B5 is statistically insignificant. In addition, SAS reports a t-test for the near end
point restriction which is rejected with a p-value of 0.0001. The Almon lag restrictions can be
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Table 6.2 Almon Polynomial, r = 2, s = 5 and Near End-Point Constraint

PDLREG Procedure

Dependent Variable = C
Ordinary Least Squares Estimates

SSE 0.014807 DFE 36

MSE 0.000411 Root MSE 0.020281

SBC -185.504 AIC -190.495

Reg Rsq 0.9936 Total Rsq 0.9936

Durbin-Watson 0.6958

Variable DF B Value Std Error t Ratio Approx Prob

Intercept 1 0.093289 0.1241 0.752 0.4571

Y**0 1 0.400930 0.00543 73.838 0.0001

Y**1 1 -0.294560 0.0892 -3.302 0.0022

YH*2 1 -0.268490 0.0492 -5.459 0.0001

Restriction DF L Value Std Error t Ratio Approx Prob

Y(-1) -1 0.005691 0.00135 4.203 0.0001
Parameter  Std t Approx Estimate of Lag Distribution

Variable  Value Error Ratio Prob  _¢.159 0 0.3161

Y(O) 019324 0027 716 00001 | | %k k& Kk ok ok ok k ok ok ok ok ok ok ok ‘

Y(l) 0-29859 0-038 7-88 0-0001 | | KKk Kk ok k ok ok Kk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ‘

Y(2) 0-31606 0-033 9-67 0.0001 | | Kk K Kk ok ok ok ko k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ‘

Y(3) 0.24565 0.012 21.20 0-0001 | | kK Kk ok k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ‘

Y(4) 0.08735 0.026 3.32 0.0020 | [E—— |

Y(5) -0.15883 0.080 -1.99 0.0539  |sskswnhnxxni | |

jointly tested using Chow’s F-statistic. The URSS is obtained from the unrestricted regression
of Cy on Yy, Y;_1,...,Y;_5 and a constant. This was reported above as URSS = 0.00667.
The RRSS, given in Table 6.2, is 0.014807 and involves four restrictions. Therefore,

014807 — 0. 4
5 (0.014807 — 0.00667)/4 _
0.00667/32

and this is distributed as Fy 32 under the null hypothesis. The observed F-statistic has a p-value
of 0.00003 and we reject the second degree polynomial Almon lag specification with a near end
point constraint.

Table 6.3 reports the SAS output for s = 5, imposing the far end point constraint. Note
that this restriction is rejected with a p-value of 0.008. In this case, the B’s are decreasing,
BO = 0.502, Bl =0.309,... ,35 = —0.026 with /@4 and Bs being statistically insignificant. Most
packages have polynomial distributed lags as part of their standard commands. For example,
using EViews, replacing the regressor Y by PDL(Y,5,2,1) indicates the request to fit a five
year Almon lag on Y that is of the second-order degree, with a near end point constraint.
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Table 6.3 Almon Polynomial, »r = 2, s = 5 and Far End-Point Constraint

PDLREG Procedure

Dependent Variable = C
Ordinary Least Squares Estimates

SSE 0.009244 DFE 36

MSE 0.000257 Root MSE 0.016024

SBC —-203.879 AIC —208.87

Reg Rsq 0.9960 Total Rsq 0.9960

Durbin-Watson 0.6372

Variable DF B Value Std Error t Ratio Approx Prob

Intercept 1 —0.015868 0.1008 -0.157 0.8757

Y**0 1 0.405244 0.00439 92.331 0.0001

Y**1 1 —0.441447 0.0706 —6.255 0.0001

YH**2 1 —0.133484 0.0383 -3.483 0.0013

Restriction DF L Value Std Error t Ratio Approx Prob

Y(-1) -1 0.002758 0.00107 2.575 0.0080

Parameter  Std t Approx Estimate of Lag Distribution

Variable  Value Error Ratio Prob  _p.026 0.5021

Y(O) 0.50208 0.064 7.89 0.0001 | ‘*************************************** ‘

Y(1) 0.30916 0.022 14.32 0.0001 | skttt sk sekostsek sk stk ok ok ko |

Y(2) 0.15995 0.008 19.82 (0801010 N [ P —— |

Y(3) 0.05442 0.025 2.20 0.0343 | |xxxx \

Y(4) -0.00741 0.029 -0.26 0.7998 | | \

Y(5) -0.02555 0.021 -1.23 0.2268 || |
6.2 Infinite Distributed Lag

So far we have been dealing with a finite number of lags imposed on X;. Some lags may be
infinite. For example, the investment in building highways and roads several decades ago may
still have an effect on today’s growth in GNP. In this case, we write equation (6.1) as

Y—t:a+zrioioﬂiXt7i+ut t:1,2,...,T. (67)

There are an infinite number of §,’s to estimate with only 7" observations. This can only be
feasible if more structure is imposed on the 3,’s. First, we normalize these [,’s by their sum,
ie., let w; = B;/3 where g = Y72 ;. If all the 3,’s have the same sign, then the §,’s take
the sign of § and 0 < w; < 1 for all 4, with > 7% w; = 1. This means that the w;’s can be
interpreted as probabilities. In fact, Koyck (1954) imposed the geometric lag on the w;’s, i.e.,
w; = (1= XNA for i =0,1,...,00". Substituting

B = Bus = A1 — NN
in (6.7) we get

Vi=a+B(1 -\ 20 N X+ u (6.8)
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Equation (6.8) is known as the infinite distributed lag form of the Koyck lag. The short-run
effect of a unit change in X; on Y; is given by B(1 — \); whereas the long-run effect of a unit
change in X; on Y is > 720 8; = B iopw; = (. Implicit in the Koyck lag structure is that
the effect of a unit change in X; on Y; declines the further back we go in time. For example, if
A =1/2, then By = /2, 5, = 8/4, By = B/8, etc. Defining LX; = X;_1, as the lag operator,
we have L'X; = X;_;, and (6.8) reduces to

Vi=a+B01-NXRAL)X +u=a+ 31— NX/(1—AL) +uy (6.9)

where we have used the fact that Y ;°, ¢’ = 1/(1—c). Multiplying the last equation by (1— L)
one gets

th — )\}/t,l = Oé(l — )\) + ﬁ(l — /\)Xt + up — )\Ut,1
or
Y, =AY 1+ 04(1 — /\) + ﬂ(l — /\)Xt + U — Aup_1q (610)

This is the autoregressive form of the infinite distributed lag. It is autoregressive because it
includes the lagged value of Y; as an explanatory variable. Note that we have reduced the
problem of estimating an infinite number of 3,’s into estimating A and g from (6.10). However,
OLS would lead to biased and inconsistent estimates, because (6.10) contains a lagged dependent
variable as well as serially correlated errors. In fact the error in (6.10) is a Moving Average
process of order one, i.e., MA(1), see Chapter 14. We digress at this stage to give two econometric
models which would lead to equations resembling (6.10).

6.2.1 Adaptive Expectations Model (AEM)

Suppose that output Y; is a function of expected sales X; and that the latter is unobservable,
ie.,

Y=o+ BX; +u
where expected sales are updated according to the following method
Xi = Xi = 6(X = Xiy) (6.11)

that is, expected sales at time ¢ is a weighted combination of expected sales at time ¢ — 1 and
actual sales at time ¢. In fact,

X7 =0X,+(1—08)X;, (6.12)

Equation (6.11) is also an error learning model, where one learns from past experience and adjust
expectations after observing current sales. Using the lag operator L, (6.12) can be rewritten as
X} =0Xy/[1 — (1 —d)L]. Substituting this last expression in the above relationship, we get

Yi=a+ 86X /[1 - (1—-0)L] 4+ w (6.13)
Multiplying both sides of (6.13) by [1 — (1 — 0)L], we get

Yi—(1-960)Yi1=a[(1—(1-98)]4+ 80X +ur — (1 — 0)ug—1 (6.14)
(6.14) looks exactly like (6.10) with A = (1 — 9).
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6.2.2 Partial Adjustment Model (PAM)

Under this model there is a cost of being out of equilibrium and a cost of adjusting to that
equilibrium, i.e.,

Cost = a(Y; — Y;*)? + b(Y; = Yi-1)? (6.15)

where Y;* is the target or equilibrium level for Y, whereas Y; is the current level of Y. The
first term of (6.15) gives a quadratic loss function proportional to the distance of Y; from the
equilibrium level Y;*. The second quadratic term represents the cost of adjustment. Minimizing
this quadratic cost function with respect to Y, we get Y; = vY;*+(1—~)Y;—1, where v = a/(a+b).
Note that if the cost of adjustment was zero, then b = 0, v = 1, and the target is reached
immediately. However, there are costs of adjustment, especially in building the desired capital
stock. Hence,

Vi=9Y"+ (1 -1 +w (6.16)

where we made this relationship stochastic. If the true relationship is Y;* = a + X4, then from
(6.16)

Vi=ya+8Xe+ (1 =Y +w (6.17)

and this looks like (6.10) with A = (1 — ), except for the error term, which is not necessarily
MA(1) with the Moving Average parameter .

6.3 Estimation and Testing of Dynamic Models with Serial
Correlation

Both the AEM and the PAM give equations resembling the autoregressive form of the infinite
distributed lag. In all cases, we end up with a lagged dependent variable and an error term
that is either Moving Average of order one as in (6.10), or just classical or autoregressive as in
(6.17). In this section we study the testing and estimation of such autoregressive or dynamic
models.

If there is a Y;_1 in the regression equation and the wu;’s are classical disturbances, as may
be the case in equation (6.17), then Y;_y is said to be contemporaneously uncorrelated with
the disturbance term w;. In fact, the disturbances satisfy assumptions 1-4 of Chapter 3 and
E(Y;—1ut) = 0 even though F(Y;—ju;—1) # 0. In other words, Y;_; is not correlated with the
current disturbance u; but it is correlated with the lagged disturbance u;—1. In this case, as
long as the disturbances are not serially correlated, OLS will be biased, but remains consistent
and asymptotically efficient. This case is unlikely with economic data given that most macro
time-series variables are highly trended. More likely, the u;’s are serially correlated. In this case,
OLS is biased and inconsistent. Intuitively, Y; is related to wug, so Y;_1 is related to us—y1. If uy
and uy_7 are correlated, then Y;_; and wu; are correlated. This means that one of the regressors,
lagged Y, is correlated with u; and we have the problem of endogeneity. Let us demonstrate
what happens to OLS for the simple autoregressive model with no constant

YV, =p8Yi1+v, |Bl<1 t=12,...,T (6.18)
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with vy = pvy_1 + €, |p| < 1 and ¢ ~ IIN(0,02). One can show, see problem 3, that
5 T T T T
Bors = 2= YiYi1/ X o4—n Yf,l =B+ Y/ Y Yil

with plim(BOLS — ) = asymp. bias(BOLS) = p(1—/?)/(1+pB). This asymptotic bias is positive
if p > 0 and negative if p < 0. Also, this asymptotic bias can be large for small values of # and
large values of p. For example, if p = 0.9 and g = 0.2, the asymptotic bias for § is 0.73. This is
more than 3 times the value of 3. R

Also, p =1 0 1) S|, V7| where Dy = Y; — BopgYi1 has

plim(p — p) = —p(1 — B3 /(1 4 pB) = — asymp.biaS(BOLS)

This means that if p > 0, then p would be negatively biased. However, if p < 0, then p is
positively biased. In both cases, p is biased towards zero. In fact, the asymptotic bias of the
D.W. statistic is twice the asymptotic bias of 851, see problem 3. This means that the D.W.
statistic is biased towards not rejecting the null hypothesis of zero serial correlation. Therefore,
if the D.W. statistic rejects the null of p = 0, it is doing that when the odds are against it,
and therefore confirming our rejection of the null and the presence of serial correlation. If on
the other hand it does not reject the null, then the D.W. statistic is uninformative and has
to be replaced by another conclusive test for serial correlation. Such an alternative test in the
presence of a lagged dependent variable has been developed by Durbin (1970), and the statistic
computed is called Durbin’s h. Using (6.10) or (6.17), one computes OLS ignoring its possible
bias and p from OLS residuals as shown above. Durbin’s h is given by

h = pln/(1 — n var(coeff. of Y;_1))]*/2. (6.19)

This is asymptotically distributed N(0,1) under null hypothesis of p = 0. If n|[var(coeff. of
Y;_1)] is greater than one, then h cannot be computed, and Durbin suggests running the OLS
residuals e; on e;—1 and the regressors in the model (including the lagged dependent variable),
and testing whether the coefficient of e;_1 in this regression is significant. In fact, this test can
be generalized to higher order autoregressive errors. Let u; follow an AR(p) process

Up = P1U—1 + Polp—2 + .. + PpUi—p + €

then this test involves running e; on e;—1,€;—2, . .., e;—p and the regressors in the model including
Yi—1. The test statistic for Ho; p; = pg = .. = p, = 0; is TR? which is distributed X]%. This is the
Lagrange multiplier test developed independently by Breusch (1978) and Godfrey (1978) and
discussed in Chapter 5. In fact, this test has other useful properties. For example, this test is the
same whether the null imposes an AR(p) model or an MA(p) model on the disturbances, see
Chapter 14. Kiviet (1986) argues that even though these are large sample tests, the Breusch-
Godfrey test is preferable to Durbin’s A in small samples.

6.3.1 A Lagged Dependent Variable Model with AR(1) Disturbances

A model with a lagged dependent variable and an autoregressive error term is estimated using
instrumental variables (IV). This method will be studied extensively in Chapter 11. In short, the
IV method corrects for the correlation between Y; 1 and the error term by replacing Y;_ 1 with
its predicted value f/t,l. The latter is obtained by regressing Y;_1 on some exogenous variables,
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say a set of Z’s, which are called a set of instruments for Y;_1. Since these variables are exogenous
and uncorrelated with uy, Y;_1 will not be correlated with u;. Suppose the regression equation
is

Vi=a+8Y1 +9X:+u t=2,...,T (6.20)

and that at least one exogenous variable Z; exists which will be our instrument for Y;_;. Re-
gressing Y;_1 on Xy, Z; and a constant, we get

Vi1 =Yi1 + 0 = a1 + 627 + @3 X, + D (6.21)

Then Y,_; = @1 + @27, + a3X; and is independent of u;, because it is a linear combination of
exogenous variables. But, Y;_1 is correlated with u;. This means that 7y is the part of Y;_; that
is correlated with wu;. Substituting Y;—1 = Y;—1 + U in (6.20) we get

Yy = a+ BY 1+ X + (u + BDr) (6.22)

1/;},1 is uncorrelated with the new error term (u; + 8v;) because Eﬁ,lﬁt =0 from (6.21). Also,
X, is uncorrelated with u; by assumption. But, from (6.21), X, also satisfies ¥.X;7; = 0. Hence,
X is uncorrelated with the new error term (u; + V¢). This means that OLS applied to (6.22)
will lead to consistent estimates of «, § and «. The only remaining question is where do we find
instruments like Z;? This Z; should be (i) uncorrelated with uy, (ii) preferably predicting Y;_1
fairly well, but, not predicting it perfectly, otherwise 17},1 = Y;_1. If this happens, we are back to
OLS which we know is inconsistent, (iii) X2?/T should be finite and different from zero. Recall
that 2, = Z; — Z. In this case, X;_; seems like a natural instrumental variable candidate. It is
an exogenous variable which would very likely predict Y; 1 fairly well, and satisfies Exf_l /T
being finite and different from zero. In other words, (6.21) regresses Y;_; on a constant, X; 1
and Xy, and gets 17,5_1. Additional lags on X; can be used as instruments to improve the small
sample properties of this estimator. Substituting }A/t_l in equation (6.22) results in consistent
estimates of the regression parameters. Wallis (1967) substituted these consistent estimates in
the original equation (6.20) and obtained the residuals @;. Then he computed

=ttt /(T = V))/[¢ @ /T) + (3/T)

where the last term corrects for the bias in p. At this stage, one can perform a Prais-Winsten
procedure on (6.20) using p instead of p, see Fomby and Guilkey (1983).

An alternative two-step procedure has been proposed by Hatanaka (1974). After estimating
(6.22) and obtaining the residuals u; from (6.20), Hatanaka (1974) suggests running Y;* =Y, —
pYeyonYr | =Y, 1 —pYi o, X{ = Xy —pX;_1 and uz—;. Note that this is the Cochrane-Orcutt
transformation which ignores the first observation. Also, p = Zths ﬂjﬂt_l / Z;‘F:?) u? ignores the
small sample bias correction factor suggested by Wallis (1967). Let & be the coefficient of @;_1,
then the efficient estimator of p is given by 5 =p+ 5. Hatanaka shows that the resulting
estimators are asymptotically equivalent to the MLE in the presence of Normality.

Empirical Example: Consider the Consumption-Income data from the Economic Report of the
President over the period 1950-1993 given in Table 5.1. Problem 5 asks the reader to verify
that Durbin’s h obtained from the lagged dependent variable model described in (6.20) yields
a value of 3.367. This is asymptotically distributed as N(0,1) under the null hypothesis of no
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serial correlation of the disturbances. This null is soundly rejected. The Bruesch and Godfrey
test runs the regression of OLS residuals on their lagged values and the regressors in the model.
This yields a TR? = 7.972. This is distributed as x? under the null. Therefore, we reject the
hypothesis of no first-order serial correlation. Next, we estimate (6.20) using current and lagged
values of income (Y3, Y;—1 and Y;_2) as a set of instruments for lagged consumption (Cy_1). The
regression given by (6.22), yields:

Cy = —0.053 + 0.196 C,_y+ 0.802 Y;+ residuals
(0.0799)  (0.1380) (0.1386)

Substituting these estimates in (6.20), one gets the residuals @;. Based on these @;’s, the Wallis
(1967) estimate of p yields p = 0.681. Using this p, the Prais-Winsten regression on (6.20) gives
the following result:

C; = 0.0007 + 0.169 Cy—1+ 0.822 Y; + residuals
(0.007)  (0.088) (0.088)

Alternatively, based on %, one can compute Hatanaka’s (1974) estimate of p given by p = 0.597
and run Hatanaka’s regression

C;=-0.036+ 0.182 C; ,+ 0.820 Y+ 0.068 @_; + residuals
(0.054)  (0.098) (0.099) (0.142)

where Cf = C; — pC}_1. The efficient estimate of p is given by z = p+ 0.068 = 0.665.

6.3.2 A Lagged Dependent Variable Model with MA(1) Disturbances

Zellner and Geisel (1970) estimated the Koyck autoregressive representation of the infinite
distributed lag, given in (6.10). In fact, we saw that this could also arise from the AEM, see
(6.14). In particular, it is a regression with a lagged dependent variable and an MA(1) error
term with the added restriction that the coefficient of Y;_; is the same as the MA(1) parameter.
For simplicity, we write

Yi=a+ A1 + 8X + (up — Aug—1) (6.23)
Let w; = Y; — uy, then (6.23) becomes

wy = a+ w1 + Xy (6.24)
By continuous substitution of lagged values of w; in (6.24) we get

wy = a(l+ X+ X2+ X 4 Mwg + B(Xy +AX 1+ ..+ A1)
and replacing w; by (Y; — uz), we get

Vi=a(l+ A+ X2+ 2N 4 Mg+ 83X, + A+ .+ X1 X)) + (6.25)

knowing A, this equation can be estimated via OLS assuming that the disturbances u; are not
serially correlated. Since X is not known, Zellner and Geisel (1970) suggest a search procedure
over A\, where 0 < A < 1. The regression with the minimum residual sums of squares gives the
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optimal A, and the corresponding regression gives the estimates of «, § and wg. The last coeffi-
cient w, = Y,—u, = E(Y,) can be interpreted as the expected value of the initial observation on
the dependent variable. Klein (1958) considered the direct estimation of the infinite Koyck lag,
given in (6.8) and arrived at (6.25). The search over A results in MLEs of the coefficients. Note,
however, that the estimate of w, is not consistent. Intuitively, as ¢ tends to infinity, ! tends to
zero implying no new information to estimate w,. In fact, some applied researchers ignore the
variable A’ in the regression given in (6.25). This practice, known as truncating the remainder, is
not recommended since the Monte Carlo experiments of Maddala and Rao (1971) and Schmidt
(1975) have shown that even for 7' = 60 or 100, it is not desirable to omit \* from (6.25).

In summary, we have learned how to estimate a dynamic model with a lagged dependent
variable and serially correlated errors. In case the error is autoregressive of order one, we have
outlined the steps to implement the Wallis T'wo-Stage estimator and Hatanaka’s two-step proce-
dure. In case the error is Moving Average of order one, we have outlined the steps to implement
the Zellner-Geisel procedure.

6.4 Autoregressive Distributed Lag

So far, section 6.1 considered finite distributed lags on the explanatory variables, whereas section
6.2 considered an autoregressive relation including the first lag of the dependent variable and
current values of the explanatory variables. In general, economic relationships may be generated
by an Autoregressive Distributed Lag (ADL) scheme. The simplest form is the ADL (1,1) model
which is given by

}/t = + )\Y:t—l + ﬂoXt + 6]_Xt—1 + Ut (626)

where both Y; and X; are lagged once. By specifying higher order lags for Y; and Xy, say an
ADL (p, q) with p lags on Y; and ¢ lags on Xy, one can test whether the specification now is
general enough to ensure White noise disturbances. Next, one can test whether some restrictions
can be imposed on this general model, like reducing the order of the lags to arrive at a simpler
ADL model, or estimating the simpler static model with the Cochrane-Orcutt correction for
serial correlation, see problem 20 in Chapter 7. This general to specific modelling strategy is
prescribed by David Hendry and is utilized by the econometric software PC-Give, see Gilbert

(1986).
Returning to the ADL (1,1) model in (6.26) one can invert the autoregressive form as follows:
Vi=a(l+ A+ 224+ .)+ (1 + AL+ NL2 4+ ) (B Xt + 81 X1 + w) (6.27)

provided |A| < 1. This equation gives the effect of a unit change in X; on future values of
Y:. In fact, 0Y;/0X; = By while 0Y;11/0X: = 81 + APy, etc. This gives the immediate short-
run responses with the long-run effect being the sum of all these partial derivatives yielding
(Bo+31)/(1—X). This can be alternatively derived from (6.26) at the long-run static equilibrium
(Y*, X*) where V; = Y;—1 = Y*, X; = X;—1 = X* and the disturbance is set equal to zero, i.e.,
* o Bo + B1
T S

Replacing Y; by Y;—1 + AY; and X; by X;—1 + AX; in (6.26) one gets
AY; = a+ BpAXy — (1 = \)Yio1 + (B + B1) Xi—1 +ur

X+ (6.28)
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This can be rewritten as

a By +/31Xt_1

AY, = BpAXy = (1= ) [Vig = o = 20

+ U (6.29)

Note that the term in brackets contains the long-run equilibrium parameters derived in (6.28).
In fact, the term in brackets represents the deviation of Y;_; from the long-run equilibrium
term corresponding to X;_1. Equation (6.29) is known as the Error Correction Model (ECM),
see Davidson, Hendry, Srba and Yeo (1978). Y; is obtained from Y;_; by adding the short-run
effect of the change in X; and a long-run equilibrium adjustment term. Since, the disturbances
are White noise, this model is estimated by OLS.

Note

1. Other distributions besides the geometric distribution can be considered. In fact, a Pascal distri-
bution was considered by Solow (1960), a rational-lag distribution was considered by Jorgenson
(1966), and a Gamma distribution was considered by Schmidt (1974, 1975). See Maddala (1977)
for an excellent review.

Problems

1. Consider the Consumption-Income data given in Table 5.1 and provided on the Springer web site
as CONSUMP.DAT. Estimate a Consumption-Income regression in logs that allows for a six year
lag on income as follows:

(a) Use the linear arithmetic lag given in equation (6.2). Show that this result can also be
obtained as an Almon lag first-degree polynomial with a far end point constraint.

(b) Use an Almon lag second-degree polynomial, described in equation (6.4), imposing the near
end point constraint.

Use an Almon lag second-degree polynomial imposing the far end point constraint.
Use an Almon lag second-degree polynomial imposing both end point constraints.

)
)
e) Using Chow’s F-statistic, test the arithmetic lag restrictions given in part (a).
) Using Chow’s F-statistic, test the Almon lag restrictions implied by the model in part (b).
)

Repeat part (f) for the restrictions imposed in parts (c¢) and (d).

2. Consider fitting an Almon lag third degree polynomial 3; = ag+a1i-+a2i%+azi3 fori = 0,1,...,5,
on the Consumption-Income relationship in logarithms. In this case, there are five lags on income,
ie, s=>5.

(a) Set up the estimating equation for the a;’s and report the estimates using OLS.

(b) What is your estimate of 557 What is the standard error? Can you relate the var(@z))) to the
variances and covariances of the a;’s?

(¢) How would the OLS regression in part (a) change if we impose the near end point constraint
B4 =07

(d) Test the near end point constraint.
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(e) Test the Almon lag specification given in part (a) against an unrestricted five year lag spec-
ification on income.

3. For the simple dynamic model with AR(1) disturbances given in (6.18),

(a) Verify that plim(@OLSfﬁ) = p(1-3%)/(1+pB). Hint: From (6.18), Y;_; = BY;_o+v;_; and
pYi_1 = pBY;_2 + pvi_1. Subtracting this last equation from (6.18) and re-arranging terms,
one gets Yy = (B+p)Yi—1 — pBYi—2+ €. Multiply both sides by Y;_; and sum Zthz YV, 1=
B+p) Y2 — B Y Yo+ S, Y16 Now divide by Y7, Y2, and take
probability limits. See Griliches (1961).

(b) For various values of |p| < 1 and |5] < 1, tabulate the asymptotic bias computed in part (a).

(c) Verify that plim(p — p) = —p(1 — 8°)/(1 + pB) = —plim(Bo s — B
Bp(B + p)

d) Usi art (c¢), show that plim d = 2(1— plim p) = 2[1 —
(d) Using part (c), show that plim d = 2(1— plim p) = 2[1 - 2L

] where d = Y7, (D, —
Di_1)?/ Zthl 77 denotes the Durbin-Watson statistic.

(e) Knowing the true disturbances, the Durbin-Watson statistic would be d* = 23:2(%5 -
ve1)?/ S, v2 and its plim d* = 2(1 — p). Using part (d), show that plim (d — d*) =
2p(1 - §°)

1+ 8p
various values of |p| < 1 and |§] < 1, tabulate d* and d and the asymptotic bias in part (d).

= 2plim(E0LS — () obtained in part (a). See Nerlove and Wallis (1966). For

4. For the simple dynamic model given in (6.18), let the disturbances follow an MA(1) process
v = € + Oe;_q with e ~ IIN(0, 02).

(1 5%
14285

(b) Tabulate this asymptotic bias for various values of |3] < 1 and 0 < 6 < 1.

1
(c) Show that plim(f 23:2 77) = 02[1 + 0(0 — 6*)] where 6* = §(1 — 5%)/(1 + 2836) and 7, =
Y — BorsYe-1-

5. Consider the lagged dependent variable model given in (6.20). Using the Consumption-Income

data from the Economic Report of the President over the period 1950-1993 which is given in Table
5.1.

(a) Show that plim(BOLS —-p) = where § = 0/(1 + 6%).

(a) Test for first-order serial correlation in the disturbances using Durbin’s h given in (6.19).

(b) Test for first-order serial correlation in the disturbances using the Breusch (1978) and Godfrey
(1978) test.

(c) Test for second-order serial correlation in the disturbances.

6. Using the U.S. gasoline data in Chapter 4, problem 15 given in Table 4.2 and obtained from the
USGAS.ASC file, estimate the following two models:

Static: lo % =, +7,lo RGNP + v3lo %
: log CAR t—’h Y2108 POP , Y3log POPt

PMG
+ralos | paNp
t

Dynamic: log (%) =71 + 7qlog (RGﬂ) + (%)
' CAR ), "7 "7 POP ), C;MJGDOP ,
log [ —— log [ 2———
Hralog (PGNP)t  Alog ( CAR )H tea

+ €
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(a) Compare the implied short-run and long-run elasticities for price (PM G) and income (RGN P).
(b) Compute the elasticities after 3,5 and 7 years. Do these lags seem plausible?

(¢) Can you apply the Durbin-Watson test for serial correlation to the dynamic version of this
model? Perform Durbin’s h-test for the dynamic gasoline model. Also, the Breusch-Godfrey
test for first-order serial correlation.

7. Using the U.S. gasoline data in Chapter 4, problem 15, given in Table 4.2 estimate the following
model with a six year lag on prices:

g (QMGY _ . (RGNP\ . (CAR
\‘car ), "8\ "popr ), T ¥\ PoP ),
PMG
6 .
742 i—owi log <PGNP)F

(a) Report the unrestricted OLS estimates.

(b) Now, estimate a second degree polynomial lag for the same model. Compare the results with
part (a) and explain why you got such different results.

(¢) Re-estimate part (b) comparing the six year lag to a four year, and eight year lag. Which
one would you pick?
(d) For the six year lag model, does a third degree polynomial give a better fit?

(e) For the model outlined in part (b), reestimate with a far end point constraint. Now, reestimate
with only a near end point constraint. Are such restrictions justified in this case?
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CHAPTER 7
The General Linear Model: The Basics

7.1 Introduction

Consider the following regression equation

y=XB+u (7.1)
where
Yi Xn X2 ... Xug b1 uy
)= YQ X = X'21 X.22 X'21c 8= 5.2 u=| "2
Y, X Xng oo Xk B Up,

with n denoting the number of observations and k the number of variables in the regression,
with n > k. In this case, y is a column vector of dimension (nx 1) and X is a matrix of dimension
(n x k). Each column of X denotes a variable and each row of X denotes an observation on
these variables. If y is log(wage) as in the empirical example in Chapter 4, see Table 4.1 then
the columns of X contain a column of ones for the constant (usually the first column), weeks
worked, years of full time experience, years of education, sex, race, marital status, etc.

7.2 Least Squares Estimation

Least squares minimizes the residual sum of squares where the residuals are given by e = y— X E
and (§ denotes a guess on the regression parameters 3. The residual sum of squares

RSS=3%" ef=ce=(y—Xp)(y—XB)=y'y—yXB—-FX'y+pXXp

The last four terms are scalars as can be verified by their dimensions. It is essential that the
reader keep track of the dimensions of the matrices used. This will insure proper multiplication,
addition, subtraction of matrices and help the reader obtain the right answers. In fact the middle
two terms are the same because the transpose of a scalar is a scalar. For a quick review of some
matrix properties, see the Appendix to this chapter. Differentiating the RSS with respect to 3
one gets

ORSS/0B = —2X'y +2X' X3 (7.2)

where use is made of the following two rules of differentiating matrices. The first is that
9a’b/db = a and the second is

OV Ab)/Ob = (A + A)b = 2Ab

where the last equality holds if A is a symmetric matrix. In the RSS equation a is ¥’ X and A is
X'X . The first-order condition for minimization equates the expression in (7.2) to zero. This yields

X'XB=X"y (7.3)
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which is known as the OLS normal equations. As long as X is of full column rank , i.e., of rank k,
then X'X is nonsingular and the solution to the above equations is BOLS = (X'X)"'X'y. Full
column rank means that no column of X is a perfect linear combination of the other columns.
In other words, no variable in the regression can be obtained from a linear combination of the
other variables. Otherwise, at least one of the OLS normal equations becomes redundant. This
means that we only have (k — 1) linearly independent equations to solve for k unknown (’s.
This yields no solution for BO g and we say that X'X is singular. X’X is the sum of squares
cross product matrix (SSCP). If it has a column of ones then it will contain the sums, the sum
of squares, and the cross-product sum between any two variables

n i Xz D Xk
X'X — > i1 Xiz >in1 Xi22 e 2im Xia Xk
Y Xk Ml XaXip .. XL XG

Of course y could be added to this matrix as another variable which will generate X'y and
y'y automatically for us, i.e., the column pertaining to the variable y will generate Y i ; vi,
S XitWis s o Xikyi, and Y, y2. To see this, let

/ /
_ 1y | Yy yX
Z =[y,X] then Z'Z= [ X'y X'X }
This matrix summarizes the data and we can compute any regression of one variable in Z on
any subset of the remaining variables in Z using only Z 'Z . Denoting the least squares residuals
by e =y — X B, the OLS normal equations given in (7.3) can be written as

X'(y— XBOLS) =X'e=0 (7.4)

Note that if the regression includes a constant, the first column of X will be a vector of ones
and the first equation of (7.4) becomes > " ; ¢; = 0. This proves the well known result that
if there is a constant in the regression, the OLS residuals sum to zero. Equation (7.4) also
indicates that the regressor matrix X is orthogonal to the residuals vector e. This will become
clear when we define e in terms of the orthogonal projection matrix on X. This representation
allows another interpretation of OLS as a method of moments estimator which was considered
in Chapter 2. This follows from the classical assumptions where X satisfies E(X'u) = 0. The
sample counterpart of this condition yields X’e/n = 0. These are the OLS normal equations
and therefore, yield the OLS estimates without minimizing the residual sums of squares. See
Kelejian and Oates (1989) and the discussion of instrumental variable estimation in Chapter 11.

Since data in economics are not generated using experiments like the physical sciences, the
X’s are stochastic and we only observe one realization of this data. Consider for example, annual
observations for GNP, money supply, unemployment rate, etc. One cannot repeat draws for this
data in the real world or fix the X’s to generate new y’s (unless one is performing a Monte
Carlo study). So we have to condition on the set of X’s observed, see Chapter 5.

Classical Assumptions: u ~ (0,021,,) which means that (i) each disturbance u; has zero mean,
(ii) constant variance, and (iii) u; and u; for i # j are not correlated. The u’s are known as
spherical disturbances. Also, (iv) the conditional expectation of u given X is zero, E(u/X) = 0.
Note that the conditioning here is with respect to every regressor in X and for all observations
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i = 1,2,...n. In other words, it is conditional on all the elements of the matrix X. Using
(7.1), this implies that E(y/X) = XJ3 is linear in 3, var(u;/X) = 0% and cov(u;,u;/X) = 0.
Additionally, we assume that plim X’X/n is finite and positive definite and plim X'u/n = 0 as
n — oo.

Given these classical assumptions, and conditioning on the X’s observed, it is easy to show
that BO g is unbiased for 5. In fact using (7.1) one can write

Bors =B+ (X'X) ' X'u (7.5)

Taking expectations, conditioning on the X’s, and using assumptions (i) and (iv), one attains
the unbiasedness result. Furthermore, one can derive the variance-covariance matrix of B g
from (7.5) since

var(Bors) = E(Bors — B)Bors — B) = E(X'X) ' X'ud/ X (X'X) ™! = o*(X'X)™" (7.6)

this uses assumption (iv) along with the fact that E(uu) = 02%I,. This variance-covariance
matrix is (k x k) and gives the variances of the ﬁz s across the diagonal and the pairwise
covariances of say ﬂz and ,6’] off the diagonal. The next theorem shows that among all linear

unbiased estimators of ¢/, it is ¢ ﬁo g which has the smallest variance. This is known as the
Gauss-Markov Theorem.

Theorem 1: Consider the linear estimator a'y for ¢/3, where both a and c are arbitrary vectors
of constants. If a'y is unbiased for ¢/ then var(a'y) > var(¢'Borg)-

Proof: For a'y to be unbiased for ¢/ it must follow from (7.1) that E(a'y) = ¢’ X0 + E(d'u) =
a’ X3 = ¢ which means that a’X = ¢’ . Also, var(a'y) = E(a'y—c'f)(a'y—c'B) = E(a'uv'a) =
2a a. Comparmg this variance with that of ¢ /BOLS, one gets var(a'y)— var(c ﬂOLS) =o%d'a—
2d(X'X)7le. But, ¢ = a'X, therefore this difference becomes o%[a’a — o/ Pxa] = o2d'Pxa

Where Py is a projection matrix on the X-plane defined as X (X’X)~!X’ and Py is defined as

I, — Px. In fact, Pxy = XEOLS =7gyand Pyy =y — Pxy =y — 3§ = e. So that 7 projects

the vector y on the X-plane and e is the projection of y on the plane orthogonal to X or

perpendicular to X, see Figure 7.1. Both Px and Px are idempotent which means that the
above difference o2aPxa is greater or equal to zero since PX is positive semi-definite. To see

this, define z = Pxa, then the above difference is equal to 022’z > 0.

The implications of the theorem are important. It means for example, that for the choice
of ¢ =(1,0,...,0) one can pick 3; = ¢/ for which the best linear unbiased estimator would
be Bl,OLS = C/BOLS. Similarly any §; can be chosen by using ¢ = (0,...,1,...,0) which has
1 in the j-th position and zero elsewhere. Again, the BLUE of 3; = ¢/ is Bj’OLS = C/BOLS.
Furthermore, any linear combination of these 3’s such as their sum Zle ; which corresponds
to d =(1,1,...,1) has the sum Z?zl ijLS as its BLUE.

The disturbance variance o2 is unknown and has to be estimated. Note that E(u'u) =

E(tr(uu)) = tr(E(uwu')) = tr(o?l,) = no?, so that u'u/n seems like a natural unbiased es-

timator for o2?. However, u is not observed and is estimated by the OLS residuals e. It is

therefore, natural to investigate E(e’e). In what follows, we show that s? = €’e/(n — k) is an
unbiased estimator for o2. To prove this, we need the fact that

e=y—XBors =y — X(X'X)"' X'y = Pyy = Pxu (7.7)
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Figure 7.1 The Orthogonal Decomposition of y

where the last equality follows from the fact that Px X = 0. Hence,
E(de) = E(u'Pxu)= E(tr{u'Pxu}) = E(tr{uu/Px})
tr(c2Px) = o*tr(Px) = o%(n — k)
where the second equality follows from the fact that the trace of a scalar is a scalar. The
third equality from the fact that tr(ABC) = tr(CAB). The fourth equality from the fact that
E(trace) = trace{E(.)}, and E(uu’) = 0%I,. The last equality from the fact that
tr(Px) = tr(I,) —tr(Px) =n—tr(X(X'X)"'X")
= n—tr(X'X(X'X)™ Y =n—tr(Ilz) =n— k.
Hence, an unbiased estimator of Var(ﬁOLS) = o?(X'X)"! is given by s?(X'X)7L.
So far we have shown that 85, is BLUE. It can also be shown that it is consistent for 8. In
fact, taking probability limits of (7.5) as n — oo, one gets

plim(Bops) = plim(8) + plim(X'X/n) "} (X u/n) = 3

The first equality uses the fact that the plim of a sum is the sum of the plims. The second
equality follows from assumption 1 and the fact that plim of a product is the product of plims.

7.3 Partitioned Regression and the Frisch-Waugh-Lovell Theorem

In Chapter 4, we studied a useful property of least squares which allows us to interpret multiple
regression coefficients as simple regression coefficients. This was called the residualing inter-
pretation of multiple regression coefficients. In general, this property applies whenever the k
regressors given by X can be separated into two sets of variables X7 and X5 of dimension (n x k1)
and (n x kg) respectively, with X = [X7, X3] and k = k1 + ko. The regression in equation (7.1)
becomes a partitioned regression given by

y=XB+u=X106;+Xa20,+u (7.8)
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One may be interested in the least squares estimates of G5 corresponding to Xo, but one has
to control for the presence of X7 which may include seasonal dummy variables or a time trend,
see Frisch and Waugh (1933) and Lovell (1963)!.

The OLS normal equations from (7.8) are as follows:

[X;XI X{XQ] Brows _[Xiy] (7.9)
X5X1 X5Xy Ba.oLs X3y

These can be solved by partitioned inversion of the matrix on the left, see the Appendix to this
chapter, or by solving two equations in two unknowns. Problem 2 asks the reader to verify that

Byors = (X4Px, X2) ' X5 Pxy (7.10)

where le = I, — Px, and Px, = X;(X|X;1) ' X]. Px, is the orthogonal projection matrix of
X7 and PX1 X, generates the least squares residuals of each column of X5 regressed on all the
variables in X7. In fact, if we denote by XQ PXng and y = Ple, then (7.10) can be written
as

32,0Ls = (X4X,) ' X455 (7.11)

using the fact that Py, is idempotent. This implies that BZ,O s can be obtained from the

regression of 3 on )?2. In words, the residuals from regressing y on X; are in turn regressed
upon the residuals from each column of X, regressed on all the variables in X;. This was
illustrated in Chapter 4 with some examples. Following Davidson and MacKinnon (1993) we
denote this result more formally as the Frisch-Waugh-Lovell (FWL) Theorem. In fact, if we
premultiply (7.8) by Py, and use the fact that Px, X; = 0, one gets

Px,y = Px, X285 + Px,u (7.12)

The FWL Theorem states that: (1) The least squares estimates of 3, from equations (7.8)
and (7.12) are numerically identical and (2) The least squares residuals from equations (7.8)
and (7.12) are identical.

Using the fact that Py, is idempotent, it immediately follows that, OLS on (7.12) yields BQ,OLS
as given by equation (7.10). Alternatively, one can start from equation (7.8) and use the result
that

y = Pxy+ Pxy = XBors + Pxy = X181 015 + X2Bs0Ls + Pxy (7.13)

where Px = X(X’Xi)le’ and Px = I, — Px. Premultiplying equation (7.13) by X} Py, and
using the fact that Px, X1 = 0, one gets

X4 Px,y = X5Px, XaBy 01,5 + X5 Px, Pxy (7.14)

But, Px, Px = Px,. Hence, Py, Px = Px. Using this fact along with PxX = Px[X1, X»] = 0,
the last term of equation (7.14) drops out yielding the result that 35 ;g from (7.14) is identical

to the expression in (7.10). Note that no partitioned inversion was used in this proof. This proves
part (1) of the FWL Theorem.
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Also, premultiplying equation (7.13) by Px, and using the fact that Py, Py = Px, one gets
ley :pX1X2ﬁ2,OLS+pr (7.15)

Now BQ,O g Was shown to be numerically identical to the least squares estimate obtained from
equation (7.12). Hence, the first term on the right hand side of equation (7.15) must be the
fitted values from equation (7.12). Since the dependent variables are the same in equations
(7.15) and (7.12), Pxy in equation (7.15) must be the least squares residuals from regression
(7.12). But, Pxy is the least squares residuals from regression (7.8). Hence, the least squares
residuals from regressions (7.8) and (7.12) are numerically identical. This proves part (2) of the
FWL Theorem.

Several applications of the FWL Theorem will be given in this book. Problem 2 shows that if
X is the vector of ones indicating the presence of a constant in the regression, then regression
(7.15) is equivalent to running (y; —¥) on the set of variables in X expressed as deviations from
their respective sample means. Problem 3 shows that the FWL Theorem can be used to prove
that including a dummy variable for one of the observations in the regression is equivalent to
omitting that observation from the regression.

7.4 Maximum Likelihood Estimation

In Chapter 2, we introduced the method of maximum likelihood estimation which is based on
specifying the distribution we are sampling from and writing the joint density of our sample.
This joint density is then referred to as the likelihood function because it gives for a given
set of parameters specifying the distribution, the probability of obtaining the observed sample.
See Chapter 2 for several examples. For the regression equation, specifying the distribution of
the disturbances in turn specifies the likelihood function. These disturbances could be Poisson,
Exponential, Normal, etc. Once this distribution is chosen, the likelihood function is maximized
and the MLE of the regression parameters are obtained. Maximum likelihood estimators are
desirable because they are (1) consistent under fairly general conditions,? (2) asymptotically
normal, (3) asymptotically efficient and (4) invariant to reparameterizations of the model?. Some
of the undesirable properties of MLE are that (1) it requires explicit distributional assumptions
on the disturbances, and (2) their finite sample properties can be quite different from their
asymptotic properties. For example, MLE can be biased even though they are consistent, and
their covariance estimates can be misleading for small samples. In this section, we derive the
MLE under normality of the disturbances.

The Normality Assumption: u ~ N(0,021,). This additional assumption allows us to
derive distributions of estimators and other random variables. This is important for constructing
confidence intervals and tests of hypotheses. In fact using (7.5) one can easily see that 55y g is
a linear combination of the u’s. But, a linear combination of normal random variables is itself
a normal random variable. Hence, Bpyg is N(3,0%(X'X)™1). Similarly y is N(X3,02I,) and
e is N(0,0%Px). Moreover, we can write the joint probability density function of the u’s as
fug,ug,. .. un; B,02) = (1/276%)" ?exp(—u'u/20?). To get the likelihood function we make
the transformation v = y — X3 and note that the Jacobian of the transformation is one. Hence

f(y17y27 cee 7yn;ﬂ70—2) = (1/271’02)”/26Xp{—(y - Xﬁ)l(y - Xﬂ)/QUQ} (716)
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Taking the log of this likelihood, we get
logL(B,0%) = —(n/2)log(210?%) — (y — XB)'(y — X§)/20° (7.17)

Maximizing this likelihood with respect to 3 and o2 one gets the maximum likelihood estimators
(MLE). Let # = 02 and Q = (y — X3)'(y — X3), then

OlogL(3,0)  2X'y—2X'Xf
a3 B 26
OlogL(B3,0) Q n
a0 o207 20

Setting these first-order conditions equal to zero, one gets
EMLE:BOLS and EZE%WLE:Q/NZRSS/NZ(J@/N

Intuitively, only the second term in the log likelihood contains § and that term (without the
negative 51gn) has already been minimized with respect to 8 in (7.2) giving us the OLS estimator.
Note that 52 MLE differs from s? only in the degrees of freedom. It is clear that ﬂ v LE 1s unbiased
for # while 53,; 5 is not unbiased for o2. Substituting these MLE’s into (7.17) one gets the
maximum value of logl, which is

logL(Byrpp, 0hrre) = —(n/2)log(2n5%15) — €'e/20% 1k
= —(n/2)log(2n) — (n/2)log(e’e/n) — n/2
= constant — (n/2)log(e’e).
In order to get the Cramér-Rao lower bound for the unbiased estimators of 3 and o2 one first
computes the information matrix

0?logL /03B  9*logL/0B0c?
2y .

[B.07) = =B 51061100208 6PlogL /00200 (7.18)
Recall, that § = 02 and Q = (y — X3)'(y — X3). It is easy to show (see problem 4) that

9*logL(B,0) _ 1 0Q 0*ogL(B,0)  —X'(y — XP)

= ——— d =
9500 2o 9003 iz
Therefore,
0?logL(3,0) —E(X'u)
E - —0
900 62
Also
9?logL(B,0) —X'X ?logL(8,0) —4Q 2 —Q
= d — /% e
0807 g 962 w0 Tae T o o
so that

B <8210gL([3,0)> _-nf  n —2n4+n _ —n

962 ® 2% 202 262



156 CHAPTER 7: The General Linear Model: The Basics

using the fact that F(Q) = no? = nf. Hence,

X'X/o? 0 } (7.19)

1(8,0%) = { 0 n/20t

The information matrix is block-diagonal between 3 and 2. This is an important property for
regression models with normal disturbances. It implies that the Cramér-Rao lower bound is
20 v/ yv)—1
—1 2\ g (X X) 0

Note that BMLE = BOLS attains the Cramér-Rao lower bound. Under normality, /ﬁ\OLS is
MVU (minimum variance unbiased). This is best among all unbiased estimators not only linear
unbiased estimators. By assuming more (in this case normality) we get more (MVU rather than
BLUE)*.

Problem 5 derives the variance of s? under normality of the disturbances. This is found to
be 20%/(n — k). This means that s?> does not attain the Cramér-Rao lower bound. However,
following the theory of complete sufficient statistics one can show that both BO Ls and s? are
MVU for their respective parameters and therefore both are small sample efficient. Note also
that 53, 5 is biased, therefore it is not meaningful to compare its variance to the Cramér-Rao
lower bound. There is a trade-off between bias and variance in estimating o2. Problem 6 looks
at all estimators of o2 of the type €’e/r and derives 7 such that the mean squared error (MSE)
is minimized. The choice of r turns out to be (n — k + 2).

We found the distribution of BO s, now we derive the distribution of s2. In order to do that
we need a result from matrix algebra, which is stated without proof, see Graybill (1961).

Lemma 1: For every symmetric idempotent matrix A of rank r, there exists an orthogonal
matrix P such that P’AP = J, where J, is a diagonal matrix with the first 7 elements equal to
one and the rest equal to zero.

We use this lemma to show that the RSS/a? is a chi-squared with (n— k) degrees of freedom.
To see this note that e¢’e/0? = u'Pyu/o? and that Px is symmetric and idempotent of rank
(n—k). Using the lemma there exists a matrix P such that PPy P = .J,,_j is a diagonal matrix
with the first (n — k) elements on the diagonal equal to 1 and the last k elements equal to zero.
Now make the change of variable v = P'u. This makes v ~ N(0,02%I,) since the v’s are linear
combinations of the u’s and P'P = I,,. Replacing u by v in RSS/0? we get

v'PPxPv/o® = ' J, /o = S F ot /o?

where the last sum is only over ¢ = 1,2,...,n — k. But, the v’s are independent identically
distributed N (0, 02), hence v?/0? is the square of a standardized N (0, 1) random variable which
is distributed as a X% Moreover, the sum of independent y? random variables is a y? random
variable with degrees of freedom equal to the sum of the respective degrees of freedom. Hence,
RSS/o? is distributed as x2_,.

The beauty of the above result is that it applies to all quadratic forms u’Au where A is
symmetric and idempotent. We will use this result again in the test of hypotheses section.
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7.5 Prediction

Let us now predict T, periods ahead. Those new observations are assumed to satisfy (7.1). In
other words

Yo = XoB + Uo (7.21)

What is the Best Linear Unbiased Predictor (BLUP) of E(y,)? From (7.21), E(y,) = X,/ which
is a linear combination of the 3’s. Using the Gauss-Markov result §, = X,8o1g is BLUE for
X, and the variance of this predictor of E(y,) is Xovar(BOLS)Xé = 02X, (X'X)"1X!. But,
what if we are interested in the predictor for y,? The best predictor of u, is zero, so the predictor
for y, is still 3, but its MSE is

E(Yo — yo/)\(/y\o — %) = E{Xo(Bors — 5) —uoH{Xo(Bors — B) — o}’

= Xovar(Borg) X, + oIt — 2cov{X,(Bors — B); Uo} (7.22)

=02 Xo(X' X)) X! + o2,

the last equality follows from the fact that (ﬁo s — B) = (X'X)"'X'u and u, have zero co-
variance. The latter holds because u, and u have zero covariance. Intuitively this says that the
future T, disturbances are not correlated with the current sample disturbances.

Therefore, the predictor of the average consumption of a $20,000 income household is the
same as the predictor of consumption of a specific household whose income is $20,000. The
difference is not in the predictor itself but in the MSE attached to it. The latter MSE being
larger.

Salkever (1976) suggested a simple way to compute these forecasts and their standard errors.
The basic idea is to augment the usual regression in (7.1) with a matrix of observation-specific
dummies, i.e., a dummy variable for each period where we want to forecast:

MR s

y* = X*5+ u* (7.24)

or

where &' = (#',7/). X* has in its second part a matrix of dummy variables one for each of
the T, periods for which we are forecasting. Since these T, observations do not serve in the
estimation, problem 7 asks the reader to verify that OLS on (7.23) yields 5 = (3/,?) where
B = (X'X)' X'y, ¥ = Yo — o, and 7, = X,3. In other words, OLS on (7.23) yields the
OLS estimate of 8 without the T, observations, and the coefficients of the T, dummies are
the forecast errors. This also means that the first n residuals are the usual OLS residuals
e = y — X3 based on the first n observations, whereas the next T, residuals are all zero.
Therefore, s*2 = 52 = €’e/(n — k), and the variance covariance matrix of § is given by
2 * yvr\—1 _ 2 (X/X)_l

SHTX) T = Iz, + X,(X'X)"1 XY (7.25)
and the off-diagonal elements are of no interest. This means that the regression package gives
the estimated variance of ﬁ and the estimated variance of the forecast error in one stroke. Note
that if the forecasts rather than the forecast errors are needed, one can replace y, by zero, and
Iy, by —Ir, in (7.23). The resulting estimate of v will be 3, = Xoﬁ, as required. The variance
of this forecast will be the same as that given in (7.25), see problem 7.
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7.6 Confidence Intervals and Test of Hypotheses

We start by constructing a confidence interval for any linear combination of 3, say ¢/3. We
know that ¢/Bopg ~ N(¢'3,0%c (X' X)71c) and it is a scalar. Hence,

Zobs = (¢ Bors — ¢ B)/a(d(X'X)Le)t/? (7.26)

is a standardized N(0,1) random variable. Replacing o by s is equivalent to dividing z.ps by
the square root of a y? random variable divided by its degrees of freedom. The latter random
variable is (n — k)s?/0? = RSS/o? which was shown to be a x2_,. Problem 8 shows that z,ps
and RSS/o? are independent. This means that

tobs = (¢ Bors — ¢ B)/s(¢ (X' X) " e)/? (7.27)

is a N(0,1) random variable divided by the square root of an independent x? , /(n — k). This
is a t-statistic with (n — k) degrees of freedom. Hence, a 100(1 — a))% confidence interval for ¢/3
is

dBors % tass(c (X' X) " o)/ (7.28)

Example: Let us say we are predicting one year ahead so that T, = 1 and z, is a (1 x k) vector
of next year’s observations on the exogenous variables. The 100(1 — «) confidence interval for
next year’s forecast of y, will be , & 4 /25(1 + 2 (X' X)) /2. Similarly (7.28) allows us to
construct confidence intervals or test any single hypothesis on any single 3, (again by picking
¢ to have 1 in its j-th position and zero elsewhere). In this case we get the usual t-statistic
reported in any regression package. More importantly, this allows us to test any hypothesis
concerning any linear combination of the 3’s, e.g., testing that the sum of coefficients of input
variables in a Cobb-Douglas production function is equal to one. This is known as a test for
constant returns to scale, see Chapter 4.

7.7 Joint Confidence Intervals and Test of Hypotheses

We have learned how to test any single hypothesis involving any linear combination of the
B’s. But what if we are interested in testing two or three or more hypotheses involving linear
combinations of the 3’s. For example, testing that 3, = 8, = 0, i.e., that variables X2 and Xy
are not significant in the model. This can be written as c53 = ¢} = 0 where ¢} is a row vector
of zeros with a one in the j-th position. In order to test these two hypotheses simultaneously,
we rearrange these restrictions on the ’s in matrix form R3 = 0 where R’ = [cg,c4]. In a
similar fashion, we can rearrange g restrictions on the §’s into this matrix R which will now be
of dimension (g x k). Also these restrictions need not be of the form RS = 0 and can be of the
more general form Rf3 = r where r is a (g x 1) vector of constants. For example, 5, + 85 = 1
and 303 + 20, = 5 are two such restrictions. Since R is a collection of linear combinations
of the 3’s, the BLUE of these is R3¢ and the latter is distributed N(R3,0?R(X'X)"'R').

Standardization of the form encountered with the scalar ¢3 gives us the following:

(RBors — RBY[R(X'X) ' R" (RBoLs — RB)/0” (7.29)
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rather than divide by the variance we multiply by its inverse, and since we divided by the
variance rather than the standard deviation we square the numerator which means in vector
form premultiplying by its transpose. Problem 9 replaces the matrix R by the vector ¢’ and
shows that (7.29) reduces to the square of the z-statistic observed in (7.26). This also proves
that the resulting statistic is distributed as x?. But, what is the distribution of (7.29)? The
trick is to write it in terms of the original disturbances, i.e.,

W X (X' X)T'RR(X'X)'RITIR(X'X) 1 X u /o (7.30)

where (RBOLS — Rp) is replaced by R(X'X)~!X'u. Note that (7.30) is quadratic in the dis-
turbances u of the form u/Au/c?. Problem 10 shows that A is symmetric and idempotent and
of rank g. Applying the same proof as given below lemma 1 we get the result that (7.30) is
distributed as xZ. Again o2 is unobserved, so we divide by (n — k)s*/o? which is x2_,. This
becomes a ratio of two x?’s random variables. If we divide the numerator and denominator x2’s
by their respective degrees of freedom and prove that they are independent (see problem 11)
the resulting statistic

(BBors =)' [R(X"X) "R (RBoLs = 1)/g5° (7.31)
is distributed under the null R3 = r as an F(g,n — k).

7.8 Restricted MLE and Restricted Least Squares

Maximizing the likelihood function given in (7.16) subject to R3 = r is equivalent to minimizing
the residual sum of squares subject to R3 = r. Forming the Lagrangian function

(B, p) = (y — XB)'(y — XB) +2u'(RB — 1) (7.32)
and differentiating with respect to 8 and p one gets

OV (B, )08 =—-2X"y+2X'XB3+2R'n=0 (7.33)

OV (B, ) /0 = ARG — 1) = 0 (7.34)
Solving for p, we premultiply (7.33) by R(X’X)~! and use (7.34)

fi = [R(X'X) 'R (RBoys — 1) (7.35)
Substituting (7.35) in (7.33) we get

Brrs = Bors — (X'X) ' R[R(X'X) 'R (RBors — 7) (7.36)

The restricted least squares estimator of § differs from that of the unrestricted OLS estimator
by the second term in (7.36) with the term in parentheses showing the extent to which the
unrestricted OLS estimator satisfies the constraint. Problem 12 shows that ﬁRLS is biased
unless the restriction RS = r is satisfied. However, its variance is always less than that of 30 LS
This brings in the trade-off between bias and variance and the MSE criteria which was discussed
in Chapter 2.

The Lagrange Multiplier estimator ji is distributed N(0,02[R(X’X)"'R/]7!) under the null
hypothesis. Therefore, to test = 0, we use

7[R(X'X)™' Ri/o” = (RBors — ) [R(X'X) ™ R (RBoLs — r)/0” (7.37)

Since p measures the cost of imposing the restriction R3 = r, it is no surprise that the right
hand side of (7.37) was already encountered in (7.29) and is distributed as XZ.
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7.9 Likelihood Ratio, Wald and Lagrange Multiplier Tests

Before we go into the derivations of these three classical tests for the null hypothesis Hy; R3 = r,
it is important for the reader to review the intuitive graphical explanation of these tests given
in Chapter 2.

The Likelihood Ratio test of Hy; R3 = r is based upon the ratio A = max/{, /max{,,, where
max/, and max/{, are the maximum values of the unrestricted and restricted likelihoods, re-
spectively. Let us assume for simplicity that o2 is known, then

max(, = (1/270%)" 2exp{—(y = XBrrrp) (v — XBrspp)/20%}

where 3 MLE = 30 1s- Denoting the unrestricted residual sum of squares by URSS, we have
max/, = (1/2r02)"?exp{—URSS/20?}

Similarly, max¥¢, is given by
max/, = (1/2702)" 2exp{—(y — XBryrrp) (v — XBrasrp)/20°}

where ERM LE = 3 rLs- Denoting the restricted residual sum of squares by RRSS, we have
max/, = (1/2r02)" ?exp{—RRSS /20%}

Therefore, —2log\ = (RRSS — URSS)/o?. Let us find the relationship between these residual
sums of squares.

er =Y — XBrrs =y~ XBors — X(Brrs — Bors) =€ — X(Brrs — Bors)  (7.38)
erer =€'e+ (Brrs — Bors) X' X(Brrs — Bors)

where e, denotes the restricted residuals andAe’reT the RRSS. The cross-product terms drop out
because X'e = 0. Substituting the value of (Brrs — Borg) from (7.36) into (7.38), we get:

RRSS — URSS = (RBors — 1) [R(X'X) 'R (RBpLs — 1) (7.39)

It is now clear that —2log) is the right hand side of (7.39) divided by 2. In fact, this Likelihood
Ratio (LR) statistic is the same as that given in (7.37) and (7.29). Under the null hypothesis
R3 = r , this was shown to be a Xﬁ-

The Wald test of R = r is based upon the unrestricted estimator and the extent of which it
satisfies the restriction. More formally, if r(8) = 0 denote the vector of g restrictions on (3 and
R(Byr1p) denotes the (g x k) matrix of partial derivatives dr(3)/0 evaluated at (), 5, then
the Wald statistic is given by

W= T(BMLE)I[R<3MLE)I(BMLE)_IR(BMLE),]_IT(BMLE) (740)

where I(3) = —FE(0%logL/0B0/'). In this case, r(8) = R3 — r, R(By.p) = R and I(@MLE) =
(X'X)/o? as seen in (7.19). Therefore,

W = (RBypp — ) [RX'X) "R (RBypp — 1) /0 (7.41)

which is the same as the LR statistic®.
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The Lagrange Multiplier test is based upon the restricted estimator. In section 7.8, we derived
the restricted estimator and the estimated Lagrange Multiplier zi. The Lagrange Multiplier y is
the cost or shadow price of imposing the restrictions RS = r. If these restrictions are true, one
would expect the estimated Lagrange Multiplier i to have mean zero. Therefore, a test for the
null hypothesis that © = 0, is called the LM test and the corresponding test statistic is given
in equation (7.37). Alternatively, one can derive the LM test as a score’ test based on the score
or the first derivative of the log-likelihood function i.e., S(3) = dlogL/93. The score is zero for
the unrestricted MLE, and the score test is based upon the departure of S(3), evaluated at the
restricted estimator B RMLE, from zero. In this case, the score form of the LM statistic is given
by

LM = S(Bryre) 1 (Brare)” S(Brure) (7.42)
For our model, S(3) = (X'y — X'Xf3)/0? and from equation (7.36) we have

S(BruLE) = X/(y—XﬁRz\A/[LE)/JQ R

{X'y = X'XBors + R [R(X'X) 'R (RBoLs —r)}/o?
R[R(X'X)"'R| ™ (RBoLs —1)/0”

Using (7.20), one gets I_l(BRMLE) = 0%(X'X)~!. Therefore, the score form of the LM test
becomes

LM = (RBops —r)[R(X'X)"" R ROX'X) " RR(X'X) 'R (RBops —r)/o°
(RBors —r)[R(X'X) 'R (RBops —1)/0” (7.43)
This is numerically identical to the LM test derived in equation (7.37) and to the W and LR
statistics derived above. Note that S(Bpy ) = R'1i/0? from (7.35), so it is clear why the Score
and the Lagrangian Multiplier tests are identical.

The score form of the LM test can also be obtained as a by-product of an artificial regression.
In fact, S(B) evaluated as Spp g is given by

S(BRMLE) = X’(y - XBRMLE)/U2

where y — XBRMLE is the vector of restricted residuals. If Hy is true, then this converges
asymptotically to u and the asymptotic variance of the vector of scores becomes (X'X)/o?.
The score test is then based upon

(y — XBRMLE)/X(XIX)ilX/(y - XBRMLE)/JQ (7.44)

This expression is the explained sum of squares from the artificial regression of (y—X 3 BMLE)/C
on X. To see that this is exactly identical to the LM test in equation (7.37), recall from equation
(7.33) that Rt = X'(y — XBpryp) and substituting this expression for R'fi on the left hand
side of equation (7.37) we get equation (7.44). In practice, o2 is estimated by 52 the Mean
Square Error of the restricted regression. This is an example of the Gauss-Newton Regression
which will be discussed in Chapter 8.

An alternative approach to testing Hy, is to estimate the restricted and unrestricted models
and compute the following F-statistic

(RRSS — URSS)/g
URSS/(n — k)

Fps = (7.45)
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This statistic is known in the econometric literature as the Chow (1960) test and was encoun-
tered in Chapter 4. Note that from equation (7.39), if we divide the numerator by o2 we get a
xﬁ statistic divided by its degrees of freedom. Also, using the fact that (n — k)s?/o? is X%_k,
the denominator divided by o2 is a xi_k statistic divided by its degrees of freedom. Problem
11 shows independence of the numerator and denominator and completes the proof that F, is
distributed F(g,n — k) under Hy.

Chow’s (1960) Test for Regression Stability
Chow (1960) considered the problem of testing the equality of two sets of regression coefficients
y1 = X161 +ur and  yo = X385 + us (7.46)

where X is ny X k and X5 is no X k with ny and ny > k. In this case, the unrestricted regression
can be written as

(1 X1 0 I3 } [ uy ]
_ + 7.47
{ Y2 } [ 0 X ] { Ba U (7.47)
under the null hypothesis Hy; 3; = B9 = 3, the restricted model becomes
Y1 X1 uy
= + 7.48
MM =

The URSS and the RRSS are obtained from these two regressions by stacking the ni; + no
observations. It is easy to show that the URSS= €/ e + ehea where e is the OLS residuals from
y1 on X1 and eg is the OLS residuals from ys on Xs. In other words, the URSS is the sum of two
residual sums of squares from the separate regressions, see problem 13. The Chow F-statistic
given in equation (7.45) has k and (n; +ng — 2k) degrees of freedom, respectively. Equivalently,
one can obtain this Chow F'-statistic from running

{Z;}=[§;]ﬂ1+{§2}(52_51)+[2} (7.49)

Note that the second set of explanatory variables whose coefficients are (8, — ;) are interaction
variables obtained by multiplying each independent variable in equation (7.48) by a dummy
variable, say D5, that takes on the value 1 if the observation is from the second regression and
0 if it is from the first regression. A test for Hy; 8, = B, becomes a joint test of significance
for the coefficients of these interaction variables. Gujarati (1970) points out that this dummy
variable approach has the additional advantage of giving the estimates of (85 — 3,) and their
t-statistics. If the Chow F-test rejects stability, these individual interaction dummy variable
coefficients may point to the source of instability. Of course, one has to be careful with the
interpretation of these individual ¢-statistics, after all they can all be insignificant with the joint
F-statistic still being significant, see Maddala (1992).

In case one of the two regressions does not have sufficient observations to estimate a separate
regression say no < k, then one can proceed by running the regression on the full data set to
get the RRSS. This is the restricted model because the extra ny observations are assumed to be
generated by the same regression as the first ny observations. The URSS is the residual sums
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of squares based only on the longer period (n; observations). In this case, the Chow F-statistic
given in equation (7.45) has ny and n; — k degrees of freedom, respectively. This is known
as Chow’s predictive test since it tests whether the shorter no observations are different from
their predictions using the model with the longer n; observations. This predictive test can be
performed with dummy variables as follows: Introduce nsy observation specific dummies, one for
each of the observations in the second regression. Test the joint significance of these no dummy
variables. Salkever’s (1976) result applies and each dummy variable will have as its estimated
coefficient the prediction error with its corresponding standard error and its t-statistic. Once,
again, the individual dummies may point out possible outliers, but it is their joint significance
that is under question.

The W, LR and LM Inequality

We have shown that the LR = W = LM for linear restrictions if the log-likelihood is quadratic.
However, this is not necessarily the case for more general situations. In fact, in the next chapter
where we consider more general variance covariance structure on the disturbances, estimating
this variance-covariance matrix destroys this equality and may lead to conflict in hypotheses
testing as noted by Berndt and Savin (1977). In this case, W > LR > LM. See also the
problems at the end of this chapter. The LR, W and LM tests are based on the efficient MLE.
When consistent rather than efficient estimators are used, an alternative way of constructing
the score-type test is known as Neyman’s C(«). For details, see Bera and Permaratne (2001).

Although, these three tests are asymptotically equivalent, one test may be more convenient
than another for a particular problem. For example, when the model is linear but the restriction
is nonlinear, the unrestricted model is easier to estimate than the restricted model. So the Wald
test suggests itself in that it relies only on the unrestricted estimator. Unfortunately, the Wald
test has a drawback that the LR and LM test do not have. In finite samples, the Wald test is not
invariant to testing two algebraically equivalent formulations of the nonlinear restriction. This
fact has been pointed out in the econometric literature by Gregory and Veall (1985, 1986) and
Lafontaine and White (1986). In what follows, we review some of Gregory and Veall’s (1985)
findings:

Consider the linear regression with two regressors

Yt = Bo + Br21t + Bomar + w (7.50)

where the u;’s are IIN(0,02), and the nonlinear restriction 3,3, = 1. Two algebraically equiv-
alent formulation of the null hypothesis are: H4; r4(8) = 8, — 1152 =0, and HB; rB(B) =
3185 — 1 = 0. The unrestricted maximum likelihood estimator is S5 ¢ and the Wald statistic
given in (7.40) is

W =rBoLs) [RBoLs)V Bors)R Bors) ™ 'r(BoLs) (7.51)

where ‘7(30 1.g) is the usual estimated variance-covariance matrix of 30 1.g- Problem 19 asks the
reader to verify that the Wald statistics corresponding to H4 and Hp using (7.51) are

WA = (3,3, — 1)2/(33011 + 2v12 + 022/33) (7.52)

and

WP = (3,8, - 1)2/(331}11 +28,Byv12 + B?UQQ) (7.53)
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where the v;;’s are the elements of ‘A/(EO 1g) fori,j = 0,1, 2. These Wald statistics are clearly not
identical, and other algebraically equivalent formulations of the null hypothesis can be generated
with correspondingly different Wald statistics. Monte Carlo experiments were performed with
1000 replications on the model given in (7.50) with various values for 8, and 5, and for a
sample size n = 20, 30, 50, 100, 500. The experiments were run when the null hypothesis is true
and when it is false. For n = 20 and 3; = 10, 85 = 0.1, so that Hy is satisfied, W* rejects the
null when it is true 293 times out of a 1000, while W2 rejects the null 65 times out of a 1000. At
the 5% level one would expect 50 rejections with a 95% confidence interval [36,64]. Both W4
and WP reject too often but W4 performs worse than W5, When n is increased to 500, W4
rejects 78 times while WP rejects 39 times out of a 1000. W4 still rejects too often although
its performance is better than that for n = 20, while W performs well and is within the 95%
confidence region. When n = 20, $; = 1 and 3, = 0.5, so that Hy is not satisfied, W rejects
the null when it is false 65 times out of a 1000 whereas W2 rejects it 584 times out of a 1000. For
n = 500, both test statistics reject the null in 1000 out of 1000 times. Even in cases where the
empirical sizes of the tests appear similar, see Table 1 of Gregory and Veall (1985), in particular
the case where 3, = 3, = 1, Gregory and Veall find that W# and W2 are in conflict about 5%
of the time for n = 20, and this conflict drops to 0.5% at n = 500. Problem 20 asks the reader
to derive four Wald statistics corresponding to four algebraically equivalent formulations of the
common factor restriction analyzed by Hendry and Mizon (1978). Gregory and Veall (1986)
give Monte Carlo results on the performance of these Wald statistics for various sample sizes.
Once again they find conflict among these tests even when their empirical sizes appear to be
similar. Also, the differences among the Wald statistics are much more substantial, and persist
even when n is as large as 500.
Lafontaine and White (1985) consider a simple regression

y=a+fr+vz+u

where y is log of per capita consumption of textiles, = is log of per capita real income and z is
log of relative prices of textiles, with the data taken from Theil (1971, p.102). The estimated
equation is:

J= 1.37 + 114z — 0.832
(0.31)  (0.16)  (0.04)

with % = 0. 0001833, and n = 17, with standard errors shown in parentheses. Consider the
null hypothesis Hy; 3 = 1. Algebraically equivalent formulations of Hy are Hy; 3° = 1 for any
exponent k. Applying (7.40) with r(3) = ¥ — 1 and R(3) = k3!, one gets the Wald statistic

Wi = (8" — D2/[(kB )2V (B) (7.54)

where B is the OLS estimate of 3 and V(E)is its corresponding estimated variance. For every k,
Wi, has a limiting x7 distribution under Hp. The critical values are X% o5 = 3.84 and Fl' = 4.6.
The latter is an exact distribution test for § = 1 under Hy. Lafontame and White ( 1985) try
different integer exponents (+k) where k = 1,2,3,6,10, 20,40. Using ﬂ = 1.14 and V(0) =
(0.16)% one gets W_99 = 24.56, Wy = 0.84, and Wog = 0.12. The authors conclude that one
could get any Wald statistic desired by choosing an appropriate exponent. Since 5 > 1, W is
inversely related to k. So, we can find a W}, that exceeds the critical values given by the x? and
F distributions. In fact, W_o¢ leads to rejection whereas W7 and Wy do not reject Hy.
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For testing nonlinear restrictions, the Wald test is easy to compute. However, it has a serious
problem in that it is not invariant to the way the null hypothesis is formulated. In this case,
the score test may be difficult to compute, but Neyman’s C(«) test is convenient to use and
provide the invariance that is needed, see Dagenais and Dufour (1991).

Notes

1. For example, in a time-series setting, including the time trend in the multiple regression is equiv-
alent to detrending each variable first, by residualing out the effect of time, and then running the
regression on these residuals.

2. Two exceptions noted in Davidson and MacKinnon (1993) are the following: One, if the model
is not identified asymptotically. For example, y, = B(1/t) + u for t = 1,2,..., T, will have (1/t)
tend to zero as T' — oo. This means that as the sample size increase, there is no information on [.
Two, if the number of parameters in the model increase as the sample size increase. For example,
the fixed effects model in panel data discussed in Chapter 11.

3. If the MLE of 3 is 8,7 5, then the MLE of (1/8) is (1/8,,1.5)- Note that this invariance property
implies that MLE cannot be in general unbiased. For example, even if 3,,; ; is unbiased for (3, by
the above reparameterization, (1/8,,; ) is not unbiased for (1/3).

4. If the distribution of disturbances is not normal, then OLS is still BLUE as long as the assumptions
underlying the Gauss-Markov Theorem are satisfied. The MLE in this case will be in general more
efficient than OLS as long as the distribution of the errors is correctly specified.

5. Using the Taylor Series approximation of r(B mLe) around the true parameter vector 3, one gets
r(Brre) = r(B)+ R(B)(Brrre — B)- Under the null hypothesis, 7(3) = 0 and the var[r(8y,.5)] =~
R(B) var(Brp) R (B).

Problems

1. Inwvariance of the Fitted Values and Residuals to Nonsingular Transformations of the Independent
Variables. Post-multiply the independent variables in (7.1) by a nonsingular transformation C, so
that X* = XC.

(a) Show that Px: = Px and Px- = Px. Conclude that the regression of y on X has the same
fitted values and the same residuals as the regression of y on X*.

(b) As an application of these results, suppose that every X was multiplied by a constant, say,
a change in the units of measurement. Would the fitted values or residuals change when we
rerun this regression?

(¢) Suppose that X contains two regressors X; and X, each of dimension n x 1. If we run the
regression of y on (X7 — Xo) and (X7 + X2), will this yield the same fitted values and the
same residuals as the original regression of y on X; and X»7

2. The FWL Theorem.

(a) Using partitioned inverse results from the Appendix, show that the solution to (7.9) yields
B2.0Ls given in (7.10).
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(b) Alternatively, write (7.9) as a system of two equations in two unknowns 31,0 s and ﬁgyo LS
Solve, by eliminating 3; o and show that the resulting solution is given by (7.10).

(¢) Using the FWL Theorem, show that if X; = ¢, a vector of ones indicating the presence of
the constant in the regression, and X» is a set of economic variables, then (i) 8, ors can

be obtained by running y; — 7 on the set of variables in X» expressed as deviations from
their respective sample means. (ii) The least squares estimate of the constant 8; 51¢ can

be retrieved as § — XéBQ,OLS where X4 = 1/, X5/n is the vector of sample means of the
independent variables in Xo.

3. Let y = X+ D;v+u wherey isnx 1, X is nx k and D; is a dummy variable that takes the value

1 for the i-th observation and 0 otherwise. Using the FWL Theorem, prove that the least squares
estimates of 3 and ~ from this regression are 35, ¢ = (X*X*)"'X*y* and Yo.5 = ¥i — iBoLs:
where X* denotes the X matrix without the ¢-th observation and y* is the y vector without
the i-th observation and (y;, 2}) denotes the i-th observation on the dependent and independent
variables. This means that 7, ¢ is the forecasted OLS residual from the regression of y* on X*
for the i-th observation which was essentially excluded from the regression by the inclusion of the
dummy variable D;.

Mazimum Likelihood Estimation. Given the log-likelihood in (7.17),
(a) Derive the first-order conditions for maximization and show that B MLE = Bo s and that

(b) Calculate the second derivatives given in (7.18) and verify that the information matrix re-
duces to (7.19).

. Given that u ~ N(0,021,), we showed that (n — k)s?/0? ~ x2_,. Use this fact to prove that,

(a) s? is unbiased for o2.
(b) var(s?) = 20*/(n — k). Hint: E(x2?) = r and var(x?) = 2r.

. Consider all estimators of 02 of the type 5> = e’e/r = u' Pxu/r with u ~ N(0,021,,).

(a) Find E(63,, ;) and the bias(53,; ).

(b) Find var(53,, ) and the MSE(63,; ).

(¢) Compute MSE(&Q) and minimize it with respect to r. Compare with the MSE of s? and
~2

OMLE:

. Computing Forecasts and Forecast Standard Errors Using a Regression Package. This is based on

Salkever (1976). From equations (7.23) and (7.24), show that

-~ -~/ s ~/ _ N ~ .

(a) dors = (Bors:Tors) Where fops = (X'X) 7' X"y, and o5 = Yo — XoBors- Hint: Set up
the OLS normal equations and solve two equations in two unknowns. Alternatively, one can
use the FWL Theorem to residual out the additional 7, dummy variables.

(b) e5rs = (€ppLs:0") and 5™ = s2.

(c) s*2(X*X*)~! is given by the expression in (7.25). Hint: Use partitioned inverse.

(d) Replace y, by 0 and I, by —Ir, in (7.23) and show that ¥ = g, = XOBOLS whereas all the
results in parts (a), (b) and (c) remain the same.

(a) Show that COV(BOLS,e) = 0. (Since both random variables are normally distributed, this
proves their independence).
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(b) Show that Bo s and s2 are independent. Hint: A linear (Bu) and quadratic (v’ Au) forms
in normal random variables are independent if BA = 0. See Graybill (1961) Theorem 4.17.

9. (a) Show that if one replaces R by ¢’ in (7.29) one gets the square of the z-statistic given in
(7.26).

(b) Show that when we replace o2 by s2, the x? statistic given in part (a) becomes the square
of a t-statistic which is distributed as F((1,n — K). Hint: The square of a N(0,1) is x3. Also
the ratio of two independent x? random variables divided by their degrees of freedom is an
F-statistic with these corresponding degrees of freedom, see Chapter 2.

10. (a) Show that the matrix A defined in (7.30) by u’Au/0? is symmetric, idempotent and of rank
g.
(b) Using the same proof given below lemma 1, show that (7.30) is x.
11. (a) Show that the two quadratic forms s? = v/ Pxu/(n — k) and that given in (7.30) are inde-

pendent. Hint: Two positive semi-definite quadratic forms ' Au and v’ Bu are independent
if and only if AB = 0, see Graybill (1961) Theorem 4.10.

(b) Conclude that (7.31) is distributed as an F'(g,n — k).
12. Restricted Least Squares.

(a) Show that BRLS given by (7.36) is biased unless R = 7.
(b) Show that the Var(BRLS) = var(A(X'X)"' X'u) where
A=1Ix — (X'X)'RIR(X'X)'R]7'R.
Prove that A2 = A, but A’ # A. Conclude that
var(Bprs) = 02A(X'X)TMA = o?{(X'X)7!
—(X'X)'R[R(X'X)'RI'R(X'X)71}.
(c) Show that V&I‘(BO ns)— var(f3 rLs) is a positive semi-definite matrix.

13. The Chow Test.

(a) Show that OLS on (7.47) yields OLS on each equation separately in (7.46). In other words,
Bi.0oLs = (X1X1)"' X{y; and Ba.0Ls = (X5X2) ™' Xy,

(b) Show that the residual sum of squares for equation (7.47) is given by RSS; + RSS2, where
RSS; is the residual sum of squares from running y; on X; for i =1, 2.

(c) Show that the Chow F-statistic can be obtained from (7.49) by testing for the joint signifi-

cance of H,; By — 3, =0.
14. Suppose we would like to test H,; 35 = 0 in the following unrestricted model given also in (7.8)

y=XB+u=X18,+XoBy+u

(a) Using the FWL Theorem, show that the URSS is identical to the residual sum of squares
obtained from Px,y = Px, X235 + Px,u. Conclude that

URSS = y'Pxy = y' Px,y — y' Px, X2(X5Px, X2) "' X3 Px,y.

(b) Show that the numerator of the F-statistic for testing H,; 3, = 0 which is given in (7.45),

is y/PXIXQ(Xépxng)leéPXIy/kg.

Substituting y = X1/3; +u under the null hypothesis, show that the above expression reduces
to ’U/PX1 _XQ()(é]D)(1 XQ)_l.XéPXI u/kz
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()

Let v = X5Px, u, show that if u ~ IIN(0,0?) then v ~ N(0,02X5 Py, X3). Conclude that
the numerator of the F-statistic given in part (b) when divided by o2 can be written as
v'[var(v)]~1v/ky where v'[var(v)] "' is distributed as x7, under H,. Hint: See the discussion
below lemma 1.

Using the result that (n — k)s?/0? ~ x2_, where s? is the URSS/(n — k), show that the

F-statistic given by (7.45) is distributed as F'(k2,n — k) under H,. Hint: You need to show
that «'Pxu is independent of the quadratic term given in part (b), see problem 11.

Show that the Wald Test for H,; 3, = 0, given in (7.41), reduces in this case to W =

B; [R(X’X)*IR’]ABQ/S2 were R = [0, I1,], Bz denotes the OLS or equivalently the MLE
of B, from the unrestricted model and s? is the corresponding estimate of o2 given by
URSS/(n — k). Using partitioned inversion or the FWL Theorem, show that the numerator
of W is ko times the expression in part (b).

Show that the score form of the LM statistic, given in (7.42) and (7.44), can be obtained
as the explained sum of squares from the artificial regression of the restricted residuals
(y— X105, prs) deflated by 5 on the matrix of regressors X. In this case, 3 = RRSS/(n— k1)
is the Mean Square Error of the restricted regression. In other words, obtain the explained
sum of squares from regressing Py, y/s on X; and X».

15. Iterative Estimation in Partitioned Regression Models. This is based on Fiebig (1995). Consider the
partitioned regression model given in (7.8) and let X3 be a single regressor, call it zo of dimension
n x 1 so that 3, is a scalar. Consider the following strategy for estimating 3,: Estimate 3; from

the shortened regression of y on X;. Regress the residuals from this regression on xs to yield b

(a)

(b)
(c)

(1)
5 -

Prove that bgl) is biased.

Now consider the following iterative strategy for re-estimating [3y:
Re-estimate (3; by regressing y — xgbél) on X; to yield bgl). Next iterate according to the
following scheme:
b = (X{X0) 7 X (y - w2bg)
béﬁ_l) = (zhas) tah(y — legj)), i=12..
Determine the behavior of the bias of bgj U ag Jj increases.

Show that as j increases b(QjH)

on (7.8).

converges to the estimator of (3, obtained by running OLS

16. Maddala (1992, pp. 120-127). Consider the simple linear regression

p=a+0X;+u; 1=1,2,...,n.

where o and 3 are scalars and u; ~ IIN(0,02). For H,; 3 =0,

()
(b)

Derive the Likelihood Ratio (LR) statistic and show that it can be written as nlog[1/(1 —7?)]
where 72 is the square of the correlation coefficient between X and y.

Derive the Wald (W) statistic for testing H,; 3 = 0. Show that it can be written as nr?/(1 —
72). This is the square of the usual t-statistic on § with 3,, = S e2/n used instead of
52 in estimating 2. 3 is the unrestricted MLE which is OLS in this case, and the e;’s are
the usual least squares residuals.

Derive the Lagrange Multiplier (LM) statistic for testing H,; 8 = 0. Show that it can be
written as nr2. This is the square of the usual t-statistic on with G5, 5 = S (i —9)%/n
used instead of s? in estimating 0. The 5%MLE is restricted MLE of o2 (i.e., imposing H,
and maximizing the likelihood with respect to o2).
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(d) Show that LM/n = (W/n)/[1 + (W/n)], and LR/n = log[l 4+ (W/n)]. Using the following
inequality « > log(1+ ) > z/(1 + ), conclude that W > LR > LM. Hint: Use © = W/n.

(e) For the cigarette consumption data given in Table 3.2, compute the W, LR, LM for the
simple regression of logC' on logP and demonstrate the above inequality given in part (d)
for testing that the price elasticity is zero?

17. Engle (1984, pp.785-786). Consider a set of T' independent observations on a Bernoulli random
variable which takes on the values y; = 1 with probability 6, and y; = 0 with probability (1 — 6).
(a) Derive the log-likelihood function, the MLE of 6, the score S(6), and the information I(6).
(b) Compute the LR, W and LM test statistics for testing H,; 8 = 0, versus Ha; 6 # 6, for
0e(0,1).
18. Engle (1984, pp. 787-788). Consider the linear regression model
y=XB+u=X16; +Xof;+u
given in (7.8), where u ~ N(0,021Ir).

(a) Write down the log-likelihood function, find the MLE of 3 and o2.

(b) Write down the score S(3) and show that the information matrix is block-diagonal between
3 and o2.

(¢) Derive the W, LR and LM test statistics in order to test H,; 8, = (37, versus Ha; 3, # 33,
where (3, is say the first k1 elements of 3. Show that if X = [X7, X5], then

W = (87 = B))'[X1Px, X1)(8% — By) /5

LM =o' X,[X| Px, X1)" ' Xu/5°

LR =T log(u'u/u'u)
where U = y — X3, u = Y — X3 and & = w'u/T, 52 = w'u/T. 3 is the unrestricted MLE,
whereas (3 is the restricted MLE.

(d) Using the above results, show that

W =T(@'s—u'n)/da

LM =T(@@u—u%)/u'u
Also, that LR = T log[l + (W/T)]; LM = W/[1 + (W/T)]; and (T — k)W/Tk1 ~ Fi, 7—&
under H,. As in problem 16, we use the inequality x > log(l + z) > z/(1 + z) to conclude
that W > LR > LM. Hint: Use = W/T. However, it is important to note that all the test

statistics are monotonic functions of the F-statistic and exact tests for each would produce
identical critical regions.

(e) For the cigarette consumption data given in Table 3.2, run the following regression:
logC = a + BlogP + ylogY + u

compute the W, LR, LM given in part (c) for the null hypothesis H,; 8 = —1.

(f) Compute the Wald statistics for H2; 8 = —1, HZ; 3° = —1 and HS; $7° = —1. How do
these statistics compare?

19. Gregory and Veall (1985). Using equation (7.51) and the two formulations of the null hypothe-
sis H4 and HP given below (7.50), verify that the Wald statistics corresponding to these two
formulations are those given in (7.52) and (7.53), respectively.
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20. Gregory and Veall (1986). Consider the dynamic equation

Yt = pYi—1 + B1xt + Boxi—1 + up

where |p| < 1, and u; ~ NID(0,02). Note that for this equation to be the Cochrane-Orcutt
transformation

Y — pYi—1 = Br(xr — pri—1) + w

the following nonlinear restriction must be satisfied —(3,p = 35 called the common factor restric-
tion by Hendry and Mizon (1978). Now consider the following four formulations of this restriction
HA; Bip+ By =05 HP; 81 + (B2/p) = 0; HE; p+ (B5/61) = 0 and HP; (B1p/f5) +1=0.

(a) Using equation (7.51) derive the four Wald statistics corresponding to the four formulations
of the null hypothesis.

(b) Apply these four Wald statistics to the equation relating real personal consumption expen-
ditures to real disposable personal income in the U.S. over the post World War II period
1950-1993, see Table 5.1.

21. Effect of Additional Regressors on R%. This problem was considered in non-matrix form in Chapter
4, problem 4. Regress y on X; which is T' x K7 and compute SSF;. Add X5 which is T' x K3 so
that the number of regressors in now K = K; + Ko. Regress y on X = [X;, X5] and get SSEs.
Show that SSEy < SSE;. Conclude that the corresponding R-squares satisfy R3 > R?. Hint:
Show that Py — Px, is a positive semi-definite matrix.
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Appendix
Some Useful Matrix Properties

This book assumes that the reader has encountered matrices before, and knows how to add, subtract
and multiply conformable matrices. In addition, that the reader is familiar with the transpose, trace,
rank, determinant and inverse of a matrix. Unfamiliar readers should consult standard texts like Bellman
(1970) or Searle (1982). The purpose of this Appendix is to review some useful matrix properties that are
used in the text and provide easy access to these properties. Most of these properties are given without
proof.

Starting with Chapter 7, our data matrix X is organized such that it has n rows and & columns, so
that each row denotes an observation on k variables and each column denotes n observations on one
variable. This matrix is of dimension n x k. The rank of an n x k matrix is always less than or equal
to its smaller dimension. Since n > k, the rank (X) < k. When there is no perfect multicollinearity
among the variables in X, this matrix is said to be of full column rank k. In this case, X’ X, the matrix
of cross-products is of dimension k£ x k. It is square, symmetric and of full rank k. This uses the fact
that the rank(X'X) = rank(X) = k. Therefore, (X’X) is nonsingular and the inverse (X’X)~! exists.
This is needed for the computation of Ordinary Least Squares. In fact, for least squares to be feasible,
X should be of full column rank k& and no variable in X should be a perfect linear combination of the
other variables in X. If we write

where 7/ denotes the i-th observation, in the data, then X'X = "7 | x;z} where z; is a column vector
of dimension %k x 1.
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An important and widely encountered matrix is the Identity matriz which will be denoted by I,, and
subscripted by its dimension n. This is a square n X n matrix whose diagonal elements are all equal to one
and its off diagonal elements are all equal to zero. Also, 021, will be a familiar scalar covariance matriz,
with every diagonal element equal to o2 reflecting homoskedasticity or equal variances (see Chapter 5),
and zero covariances or no serial correlation (see Chapter 5). Let

a2 0
Q = diag[o?] =
0 a2
be an (n x n) diagonal matrix with the i-th diagonal element equal to 2 for i = 1,2, ...,n. This matrix

will be encountered under heteroskedasticity, see Chapter 9. Note that tr(Q) = Y"1, 07 is the sum of its
diagonal elements. Also, tr(I,,) = n and tr(c21l,,) = no2. Another useful matrix is the projection matriz
Px = X(X'X)~'X’ which is of dimension n x n. This matrix is encountered in Chapter 7. If y denotes
the n x 1 vector of observations on the dependent variable, then Pxy generates the predicted values y
from the least squares regression of y on X. This matrix Px is symmetric and idempotent. This means
that P = Px and P% = PxPx = Px as can be easily verified. Some of the properties of idempotent
matrices is that their rank is equal to their trace. Hence, rank(Px) = tr(Px) = tr[X(X'X)"1X'] =
tr[ X' X (X' XY = tr(ly) = k.

Here, we used the fact that tr(ABC) = tr(CAB) = tr(BCA). In other words, the trace is unaffected by
the cyclical permutation of the product. Of course, these matrices should be conformable and the product
should result in a square matrix. Note that Px = I,, — Px is also a symmetric and idempog\ent matrix.
In this case, Pxy =y — Pxy = y — § = ¢ where e denotes the least squares residuals, y — X 355 where
BOLS = (X'X)~1 X"y, see Chapter 7. Some properties of these projection matrices are the following:

PxX:X,PxXZO,pXeZG and PerO.

In fact, X’e = 0 means that the matrix X is orthogonal to the vector of least squares residuals e. Note
that X’e = 0 means that X'(y — XBpg) =0 or X'y = X' XB51g. These k equations are known as the
OLS normal equations and their solution yields the least squares estimates @o 1s- By the definition of
Px, we have (i) Px + Px = I,,. Also, (ii) Px and Px are idempotent and (iii) Px Px = 0. In fact, any
two of these properties imply the third. The rank(Px) = tr(Px) = tr(I, — Px) = n — k. Note that Px
and Py are of rank k and (n — k), respectively. Both matrices are not of full column rank. In fact, the
only full rank, symmetric idempotent matrix is the identity matrix.

Matrices not of full rank are singular, and their inverse do not exist. However, one can find a generalized
inverse of a matrix € which we will call Q~ which satisfies the following requirements:

(i) Q2 Q =0 (i) Q™ =Q~
(iil) Q~Q is symmetric and (iv) QQ~ is symmetric.

Even if  is not square, a unique 2~ can be found for 2 which satisfies the above four properties. This
is called the Moore-Penrose generalized inverse.

Note that a symmetric idempotent matrix is its own Moore-Penrose generalized inverse. For example, it
is easy to verify that if ) = Py, then Q= = Px and that it satisfies the above four properties. Idempotent
matrices have characteristic roots that are either zero or one. The number of non-zero characteristic roots
is equal to the rank of this matrix. The characteristic roots of Q7! are the reciprocals of the characteristic
roots of €2, but the characteristic vectors of both matrices are the same.

The determinant of a matrix is non-zero if and only if it has full rank. Therefore, if A is singular,
then |A| = 0. Also, the determinant of a matrix is equal to the product of its characteristic roots.
For two square matrices A and B, the determinant of the product is the product of the determinants
|AB| = |A|-|B|. Therefore, the determinant of 2~ is the reciprocal of the determinant of 2. This follows
from the fact that |Q[|Q 71| = |Q2Q~!| = |I| = 1. This property is used in writing the likelihood function
for Generalized Least Squares (GLS) estimation, see Chapter 9. The determinant of a triangular matrix
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is equal to the product of its diagonal elements. Of course, it immediately follows that the determinant
of a diagonal matrix is the product of its diagonal elements.

The constant in the regression corresponds to a vector of ones in the matrix of regressors X. This
vector of ones is denoted by ¢, where n is the dimension of this column vector. Note that ¢} ¢, = n and
tnt), = Jyn, where J,, is a matrix of ones of dimension n x n. Note also that J,, is not idempotent, but
Jn = Jy/n is idempotent as can be easily verified. The rank(J,) = tr(J,,) = 1. Note also that I,, — J,
is idempotent with rank (n — 1). J,y has a typical element § = Y., y;/n whereas (I, — J,,)y has a
typical element (y; — 7). So that J, is the averaging matrix, whereas premultiplying by (I, — J,,) results
in deviations from the mean.

For two nonsingular matrices A and B
(AB)"' =B7'A7!

Also, the transpose of a product of two conformable matrices, (AB)' = B’A’. In fact, for the product of
three conformable matrices this becomes (ABC)" = C'B’A’. The transpose of the inverse is the inverse
of the transpose, i.e., (A71) = (A")~L.

The inverse of a partitioned matrix

A Az
A=
{ Az Az }

is

P E —FEAppAy
—AQAnE Ay + A Ay EAR AL

where F = (A1; — A12A2721A21)*1. Alternatively, it can be expressed as

Aot [ AT AT ARFAR AL A ARF
—FA21AI11 F

where F = (Age — A21A1_11A12)_1. These formulas are used in partitioned regression models, see for
example the Frisch-Waugh Lovell Theorem and the computation of the variance-covariance matrix of
forecasts from a multiple regression in Chapter 7.

An n X n symmetric matrix Q has n distinct characteristic vectors ¢y, ..., c,. The corresponding n
characteristic roots A1,...,\, may not be distinct but they are all real numbers. The number of non-
zero characteristic roots of € is equal to the rank of Q. The characteristic roots of a positive definite
matrix are positive. The characteristic vectors of the symmetric matrix Q are orthogonal to each other,
ie., cjej = 0 for i # j and can be made orthonormal with cje; = 1 for ¢ = 1,2,...,n. Hence, the
matrix of characteristic vectors C = [c1,¢a,. .., ¢y] is an orthogonal matrix, such that CC' = C'C = I,
with ¢’ = C~1. By definition Qc; = \ic; or QC = CA where A = diag[\;]. Premultiplying the last
equation by C’ we get C'QC = C'CA = A. Therefore, the matrix of characteristic vectors C' diagonalizes
the symmetric matrix Q. Alternatively, we can write @ = CAC’ = Y| Aic;¢; which is the spectral
decomposition of €.

A real symmetric n X n matrix ) is positive semi-definite if for every n x 1 non-negative vector y, we
have y'Qy > 0. If ¢/Qy is strictly positive for any non-zero y then Q is said to be positive definite. A
necessary and sufficient condition for €2 to be positive definite is that all the characteristic roots of 2 are
positive. One important application is the comparison of efficiency of two unbiased estimators of a vector
of parameters (. In this case, we subtract the variance-covariance matrix of the inefficient estimator from
the more efficient one and show that the resulting difference yields a positive semi-definite matrix, see
the Gauss-Markov Theorem in Chapter 7.

If Q2 is a symmetric and positive definite matrix, there exists a nonsingular matrix P such that
Q) = PP'. In fact, using the spectral decomposition of Q given above, one choice for P = CAY? so
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that Q@ = CAC’ = PP’. This is a useful result which we use in Chapter 9 to obtain Generalized
Least Squares (GLS) as a least squares regression after transforming the original regression model by
P~1 = (CAY?)=' = A~Y2C". In fact, if u ~ (0,0%Q), then P~'u has zero mean and var(P~'u) =
P~ Yvar(u)P~V = o2 P7IQP~Y = 02 P-1PP' P~V = 621,.

From Chapter 2, we have seen that if u ~ N(0,0%I,), then u;/0c ~ N(0,1), so that u?/o? ~ x3
and w'u/o? = I u?/o? ~ x2. Therefore, u'(02L,) tu ~ x2. If u ~ N(0,02() where €2 is positive
definite, then u* = P~y ~ N(0,021I,) and u*'u*/0? ~ x2. But u*u* = ' P~V P71y = v/Q 1u. Hence,
w'Q tu/o? ~ x2 . This is used in Chapter 9.

Note that the OLS residuals are denoted by e = Pxu. If u ~ N(0,021,), then e has mean zero and
var(e) = 02Px I, Px = 0?Px so that e ~ N(0,0?Pyx). Our estimator of o2 in Chapter 7 is s> = ¢’e/(n—k)
so that (n — k)s?/o? = e’e/o?. The last term can also be written as v/ Pxu/o?. In order to find the
distribution of this quadratic form in Normal variables, we use the following result stated as lemma 1 in

Chapter 7.

Lemma 1: For every symmetric idempotent matrix A of rank r, there exists an orthogonal matrix P
such that P’AP = J, where J, is a diagonal matrix with the first r elements equal to one and the rest
equal to zero.

We use this lemma to show that the e’e/o? is a chi-squared with (n — k) degrees of freedom. To see
this note that e’e/o® = u'Pxu/o? and that Py is symmetric and idempotent of rank (n — k). Using
the lemma there exists a matrix P such that P’PxP = J,_} is a diagonal matrix with the first (n — k)
elements on the diagonal equal to 1 and the last k elements equal to zero. An orthogonal matrix P is
by definition a matrix whose inverse, is its own transpose, i.e., P’P = I,,. Let v = P’u then v has mean
zero and var(v) = 02P'P = 021, so that v is N(0,0%I,) and u = Pv. Therefore,

e'e/o? = u'Pxu/o® = v'P'PxPv/o? =v'J,_yv/o* = Z:Zlk v?/o?
But, the v’s are independent identically distributed N (0, 02), hence v? /o2 is the square of a standardized
N(0,1) random variable which is distributed as a x3. Moreover, the sum of independent x? random
variables is a y? random variable with degrees of freedom equal to the sum of the respective degrees of
freedom, see Chapter 2. Hence, e’e/ o2 is distributed as Xif k-

The beauty of the above result is that it applies to all quadratic forms u’Au where A is symmetric
and idempotent. In general, for u ~ N(0,0%1), a necessary and sufficient condition for v’ Au/o? to
be distributed x? is that A is idempotent of rank k, see Theorem 4.6 of Graybill (1961). Another
useful theorem on quadratic forms in normal random variables is the following: If u ~ N(0,2)), then
uw Au/o? is 2 if and only if A is an idempotent matrix of rank k, see Theorem 4.8 of Graybill (1961). If
u ~ N(0,02%I), the two positive semi-definite quadratic forms in normal random variables say u'Au and
u' Bu are independent if and only if AB = 0, see Theorem 4.10 of Graybill (1961). A sufficient condition
is that tr(AB) = 0, see Theorem 4.15 of Graybill (1961). This is used in Chapter 7 to construct F-
statistics to test hypotheses, see for example problem 11. For u ~ N(0,0%I), the quadratic form u'Au
is independent of the linear form Bu if BA = 0, see Theorem 4.17 of Graybill (1961). This is used in
Chapter 7 to prove the independence of s? and Bols, see problem 8. In general, if u ~ N (0, X), then v’ Au
and u'Bu are independent if and only if AXB = 0, see Theorem 4.21 of Graybill (1961). Many other
useful matrix properties can be found. This is only a sample of them that will be implicitly or explicitly
used in this book.

The Kronecker product of two matrices say ¥® I,, where ¥ is m x m and I, is the identity matrix of
dimension n is defined as follows:

Ullln UImIn
Y1, = :

Omiln .. Ommin

In other words, we place an I,, next to every element of ¥ = [0;;]. The dimension of the resulting matrix
is mn x mn. This is useful when we have a system of equations like Seemingly Unrelated Regressions in
Chapter 10. In general, if A is m xn and B is p X ¢ then A® B is mp X ng. Some properties of Kronecker
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products include (A ® B)' = A’ ® B’. If both A and B are square matrices of order m x m and p X p
then (A® B)™' = A~"'®@ B™!,|A® B| = |A|™|BJP and tr(A ® B) = tr(A)tr(B). Applying this result to
¥ ® I, we get

(2@L) =21, and |2®L|=|2™L|"=|2™

and tr(X ® I,) = tr(X)tr(1,) = n tr(X).
Some useful properties of matrix differentiation are the following:

/
b
agb =1 wherea'is1xkandbisk x 1.
Also
oV’ Ab
5% = (A+A") where Aisk x k.

If A is symmetric, then 90’ Ab/db = 2Ab. These two properties will be used in Chapter 7 in deriving the
least squares estimator.
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CHAPTER 8
Regression Diagnostics and Specification Tests

8.1 Influential Observations!

Sources of influential observations include: (i) improperly recorded data, (ii) observational errors
in the data, (iii) misspecification and (iv) outlying data points that are legitimate and contain
valuable information which improve the efficiency of the estimation. It is constructive to isolate
extreme points and to determine the extent to which the parameter estimates depend upon
these desirable data.

One should always run descriptive statistics on the data, see Chapter 2. This will often reveal
outliers, skewness or multimodal distributions. Scatter diagrams should also be examined, but
these diagnostics are only the first line of attack and are inadequate in detecting multivariate
discrepant observations or the way each observation affects the estimated regression model.

In regression analysis, we emphasize the importance of plotting the residuals against the ex-
planatory variables or the predicted values 7 to identify patterns in these residuals that may
indicate nonlinearity, heteroskedasticity, serial correlation, etc, see Chapter 3. In this section,
we learn how to identify significantly large residuals and compute regression diagnostics that
may identify influential observations. We study the extent to which the deletion of any observa-
tion affects the estimated coefficients, the standard errors, predicted values, residuals and test
statistics. These represent the core of diagnostic tools in regression analysis.

Accordingly, Belsley, Kuh and Welsch (1980, p.11) define an influential observation as “..one
which, either individually or together with several other observations, has demonstrably larger
impact on the calculated values of various estimates (coefficients, standard errors, t-values, etc.)
than is the case for most of the other observations.”

First, what is a significantly large residual? We have seen that the least squares residuals of
y on X are given by e = (I, — Px)u, see equation (7.7). yisn x 1 and X is n x k. If u ~
IID(0, 021,,), then e has zero mean and variance o%(I,, — Px ). Therefore, the OLS residuals are
correlated and heteroskedastic with var(e;) = 02(1 — hj;) where hy; is the i-th diagonal element
of the hat matrix H = P, since §y = Hy.

The diagonal elements h;; have the following properties:

Sty hi=tr(Px) =k and  hy =" hi > hi > 0.

The last property follows from the fact that Px is symmetric and idempotent. Therefore, hfi —
hii <0 or hi(h; —1) < 0. Hence, 0 < hy; < 1, (see problem 1). hj; is called the leverage of the
i-th observation. For a simple regression with a constant,

hii = (1/n) + (27 />0y 7)

where z; = X; — X; h;; can be interpreted as a measure of the distance between X values of
the i-th observation and their mean over all n observations. A large h;; indicates that the i-th
observation is distant from the center of the observations. This means that the i-th observation
with large h;; (a function only of X; values) exercises substantial leverage in determining the
fitted value y;. Also, the larger h;;, the smaller the variance of the residual e;. Since observations
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with high leverage tend to have smaller residuals, it may not be possible to detect them by an
examination of the residuals alone. But, what is a large leverage? h;; is large if it is more
than twice the mean leverage value 2h = 2k/n. Hence, hy; > 2k/n are considered outlying
observations with regards to X values.

An alternative representation of hy; is simply hy; = d\Pxd; = ||Pxd;||* = oi(X'X)"z; where
d; denotes the i-th observation’s dummy variable, i.e., a vector of dimension n with 1 in the i-th
position and 0 elsewhere. 7} is the i-th row of X and ||.|| denotes the Euclidian length. Note
that d/X = 2.

Let us standardize the i-th OLS residual by dividing it by an estimate of its variance. A
standardized residual would then be:

gi :ei/s 17hii (81)

where o2 is estimated by s, the MSE of the regression. This is an internal studentization of the

residuals, see Cook and Weisberg (1982). Alternatively, one could use an estimate of 0% that
is independent of e;. Defining s?i) as the MSE from the regression computed without the i-th
observation, it can be shown, see equation (8.18) below, that

82 = (n k232 —e2/() —hi) _ <7;__,2__512)

Under normality, s? 5() and e; are independent and the externally studentized residuals are defined
by

(8.2)

ef = 62/8(1)\/1——]1“ ~ tn—k—l <83)

Thus, if the normality assumption holds, we can readily assess the significance of any single
studentized residual. Of course, the e will not be independent. Since this is a ¢-statistic, it is
natural to think of e} as large if its value exceeds 2 in absolute value.

Substituting (8.2) into (8.3) and comparing the result with (8.1), it is easy to show that e}
is a monotonic transformation of ¢;

1
w ~(n—k—-1\2
€, =€ <m> (84)

Cook and Wiesberg (1982) show that e} can be obtained as a t-statistic from the following
augmented regression:

y=Xp"+dip+tu (8.5)

where d; is the dummy variable for the i-th observation. In fact, = e;/(1 — h;;) and e} is the
t-statistic for testing that ¢ = 0. (see problem 4 and the proof given below). Hence, whether
the é-th residual is large can be simply determined by the regression (8.5). A dummy variable
for the i-th observation is included in the original regression and the t-statistic on this dummy
tests whether this i-th residual is large. This is repeated for all observations i = 1,...,n.

This can be generalized easily to testing for a group of significantly large residuals:

y=XB"+Dpp* +u (8.6)
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where D, is an n X p matrix of dummy variables for the p-suspected observations. One can test
©* = 0 using the Chow test described in (4.17) as follows:

[Residual SS(no dummies) — Residual SS(D,, dummies used)]/p

F= Residual SS(D,, dummies used)/(n — k — p) (87)
This will be distributed as F), ,_;_, under the null, see Gentleman and Wilk (1975). Let

ep=Dje, then E(e,) =0 and var(ep) = 0D, PxD, (8.8)
Then one can show, (see problem 5), that

'(D! PxD,)~!
gl T e e L &

Another refinement comes from estimating the regression without the i-th observation:

By = X X)) ™ Xy (8.10)

where the (7) subscript notation indicates that the i-th observation has been deleted. Using the
updating formula

(A—db) P =A" 4+ A7 (T —bA ) TpA™! (8.11)

with A = (X'X) and a = b = 2/, one gets

(XX = (X'X) 7+ (X' X) g (X' X) 71/ (1= hyg) (8.12)
Therefore
B — B(z) = (X/X)ill’iei/(l — hyi) (8.13)

Since the estimated coefficients are often of primary interest, (8.13) describes the change in the
estimated regression coefficients that would occur if the i-th observation is deleted. Note that
a high leverage observation with h;; large will be influential in (8.13) only if the corresponding
residual e; is not small. Therefore, high leverage implies a potentially influential observation,
but whether this potential is actually realized depends on y;.

Alternatively, one can obtain this result from the augmented regression given in (8.5). Note
that Py, = d;(dd;)"'d; = d;d} is an n x n matrix with 1 in the i-th diagonal position and 0
elsewhere. Py, = I, — Py, has the effect when post-multiplied by a vector y of deleting the i-th
observation. Hence, premultiplying (8.5) by P, one gets

- ()= () (%)

where the i-th observation is moved to the bottom of the data, without loss of generality. The
last observation has no effect on the least squares estimate of ﬂ* since both the dependent and
independent variables are zero. This regression will yield ﬁ = ﬂ (i) and the i-th observation’s
residual is clearly zero. By the Frisch-Waugh-Lovell Theorem given in section 7.3, the least
squares estimates and the residuals from (8.14) are numerically identical to those from (8.5).
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Therefore, B* = 3(1») in (8.5) and the i-th observation residual from (8.5) must be zero. This
implies that ¥ = y;—;f;), and the fitted values from this regression are given by j = X ;) +d;p
whereas those from the original regression (7.1) are given by X 3. The difference in residuals is
therefore

e~ e =XBu +dip — XD (8.15)

premultiplying (8.15) by Px and using the fact that PxX = 0, one gets Px (e — e(;)) = Pxd;.
But, Pxe = e and Pxe(;) = e(;), hence Pxd;p = e—e(;). Premultiplying both sides by d} one gets
d}Pxd;p = e; since the i-th residual of ey from (8.5) is zero. By definition, d.Pxd; =1 — hy,
therefore

o =-ei/(1—hi) (8.16)

premultiplying (8.15) by (X’X)~!1X’ one gets 0 = B(,—) — B+ (X'X)"1X"d;. This uses the fact
that both residuals are orthogonal to X. Rearranging terms and substituting @ from (8.16), one
gets

B—Bu = (X'X) 2,8 = (X'X) ' wiei /(1 — hii)

as given in (8.13). R
Note that s%) given in (8.2) can now be written in terms of §;:

sty = i (Yt — 1B/ (n — k — 1) (8.17)

upon substituting (8.13) in (8.17) we get

hie; \ > e?
o ]f -1 2. _ n 1t Ce o i
(n )5(7,) Zt:l <€t + 1— hii) (1 _ hii)2
2e; 62 62
_ 2 1 . 7 2 7
= (n—k)s*+ 1—h, >ty ethit + m >t hiy 7(1 ~ hii)?
2
= (n—k)s* - fh (8.18)
(23

which is (8.2). This uses the fact that He = 0 and H?> = H. Hence, Y, e;hir = 0 and
Yooy by = hi. - .
To assess whether the change in 3; (the j-th component of 3) that results from the deletion

of the i-th observation, is large or small, we scale by the variance of Ej, A X'X );]1 This is
denoted by

DFBETAS;; = (B; — Bj)/si)\/ (X' X) 5} (8.19)

Note that sg;y is used in order to make the denominator stochastically independent of the
numerator in the Gaussian case. Absolute values of DFBETAS larger than 2 are considered
influential. However, Belsley, Kuh, and Welsch (1980) suggest 2/y/n as a size-adjusted cutoff.
In fact, it would be most unusual for the removal of a single observation from a sample of 100
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or more to result in a change in any estimate by two or more standard errors. The size-adjusted
cutoff tend to expose approximately the same proportion of potentially influential observations,
regardless of sample size. The size-adjusted cutoff is particularly important for large data sets.

In case of Normality, it can also be useful to look at the change in the t-statistics, as a means
of assessing the sensitivity of the regression output to the deletion of the i-th observation:

~

B; B Biw
s\ /(X' X) 5 s/ (XX @)

DFSTAT;; = (8.20)

Another way to summarize coefficient changes and gain insight into forecasting effects when the
i-th observation is deleted is to look at the change in fit, defined as

DFFIT; = §i — Gy = 418 — Bp)) = hiiei /(1 = his) (8:21)

where the last equality is obtained from (8.13).
We scale this measure by the variance of ;, i.e., ov/hy;, giving

s 1/2 e B 1/2
DFFITS,; = ( — R () : 8.22
(1_hii> sV 1 —hii <1_hii) ‘ (8.22)

where o has been estimated by s;) and e denotes the externally studentized residual given
n (8.3). Values of DFFITS larger than 2 in absolute value are considered influential. A size-
adjusted cutoff for DFFITS suggested by Belsley, Kuh and Welsch (1980) is 2+/k/n.

In (8.3), the studentized residual e was interpreted as a t-statistic that tests for the sig-
nificance of the coeflicient ¢ of d;, the dummy variable which takes the value 1 for the i-th
observation and 0 otherwise, in the regression of y on X and d;. This can now be easily proved
as follows:

Consider the Chow test for the significance of . The RRSS = (n — k)s?, the URSS =
(n—Fk— 1)3?1‘) and the Chow F-test described in (4.17) becomes

[(n —k)s? = (n— k= 1)s3,)]/1 2
Frn—h= =05 Ds2y /(n—k—1) 5% (1 hi) (8.23)

The square root of (8.23) is ef ~ ¢,_;_1. These studentized residuals provide a better way to
examine the information in the residuals, but they do not tell the whole story, since some of
the most influential data points can have small e (and very small e;).

One overall measure of the impact of the i-th observation on the estimated regression co-
efficients is Cook’s (1977) distance measure D?. Recall, that the confidence region for all k
regression coefficients is (ﬁ - 6)’X’X(§ — B3)/ks? ~ F(k,n — k). Cook’s (1977) distance mea-
sure D? uses the same structure for measuring the combined impact of the differences in the
estimated regression coefficients when the i-th observation is deleted:

D}(s) = (B — B(i))/X/X(B - B(i))/kSQ (8.24)

Even though D?(s) does not follow the above F-distribution, Cook suggests computing the per-
centile value from this F-distribution and declaring an Ainﬂuential observation if this percentile
value > 50%. In this case, the distance between 3 and ﬂ(i) will be large, implying that the i-th
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observation has a substantial influence on the fit of the regression. Cook’s distance measure can
be equivalently computed as:

e? i
Di(s) = 15 <(1h7h”)2> (8.25)

Df(s) depends on e; and h;;; the larger e; or hy; the larger is D?(s) Note the relationship
between Cook’s D?(s) and Belsley, Kuh, and Welsch (1980) DFFITS;(c) in (8.22), i.e.,

DFFITS;(0) = VkD;(0) = (§i — #}3(;))/(o\/ i)

Belsley, Kuh, and Welsch (1980) suggest nominating DFFITS based on s(;) exceeding 2./k/n
for special attention. Cook’s 50 percentile recommendation is equivalent to DFFITS > vk,
which is more conservative, see Velleman and Welsch (1981).

Next, we study the influence of the i-th observation deletion on the covariance matrix of the
regression coefficients. One can compare the two covariance matrices using the ratio of their
determinants:

det(s2 [ X[\ X»]™Y) 82k [det[X], X ;]
(@) > (@) (9) (3) (@)“* (@)
COVRATIO; = == | ————= 8.26
det(s?[X'X]71) 52k det[ X' X1 ( )
Using the fact that
det[XEi)X(i)] = (1 — hy;)det[ X' X] (8.27)
see problem 8, one obtains
2 k
56) 1 1
COVRATIO; = ( 2 ) X = 2k (8.28)
i (n;ﬁ;l +%) (1 7h”)

where the last equality follows from (8.18) and the definition of ¢} in (8.3). Values of COVRA-
TIO not near unity identify possible influential observations and warrant further investigation.
Belsley, Kuh and Welsch (1980) suggest investigating points with | COVRATIO —1| near to or
larger than 3k/n. The COVRATIO depends upon both h;; and ef?. In fact, from (8.28), COV-
RATIO is large when hy; is large and small when e} is large. The two factors can offset each
other, that is why it is important to look at h;; and e separately as well as in combination as
in COVRATIO.

Finally, one can look at how the variance of 7; changes when an observation is deleted.
var(;) = s°hy  and  var(y)) = Var(%B(i)) = 50 (hii/(1 = hiz))
and the ratio is
FVARATIO; = s(;)/s*(1 — hiy) (8.29)

This expression is similar to COVRATIO except that [s%l.) /s?] is not raised to the k-th power.
As a diagnostic measure it will exhibit the same patterns of behavior with respect to different
configurations of h;; and the studentized residual as described for COVRATIO.
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Table 8.1 Cigarette Regression

Dependent Variable: LNC
Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 2 0.50098 0.25049 9.378 0.0004
Error 43 1.14854 0.02671
C Total 45 1.64953
Root MSE 0.16343 R-square 0.3037
Dep Mean 4.84784 Adj R-sq 0.2713
C.V. 3.37125

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 4.299662 0.90892571 4.730 0.0001
LNP 1 —1.338335 0.32460147 —4.123 0.0002
LNY 1 0.172386 0.19675440 0.876 0.3858

Example 1: For the cigarette data given in Table 3.2, Table 8.1 gives the SAS least squares
regression for logC' on logP and logY .

logC'= 430 — 1.34 logP + 0.172 logY + residuals
(0.909) (0.325) (0.197)

The standard error of the regression is s = 0.16343 and R? = 0.271. Table 8.2 gives the data
along with the predicted values of logC, the least squares residuals e, the internal studentized
residuals € given in (8.1), the externally studentized residuals e* given in (8.3), the Cook statis-
tic given in (8.25), the leverage of each observation h, the DFFITS given in (8.22) and the
COVRATIO given in (8.28).

Using the leverage column, one can identify four potential observations with high leverage, i.e.,
greater than 2h = 2k/n = 6/46 = 0.13043. These are the observations belonging to the following
states: Connecticut (CT), Kentucky (KY), New Hampshire (NH) and New Jersey (NJ) with
leverage 0.13535,0.19775,0.13081 and 0.13945, respectively. Note that the corresponding OLS
residuals are —0.078,0.234,0.160 and —0.059, which are not necessarily large. The internally
studentized residuals are computed using equation (8.1). For KY this gives

,é _ EKY o 0.23428
Y = ST = hry  0.16343v1 — 0.19775

From Table 8.2, two observations with a high internally studentized residuals are those belonging
to Arkansas (AR) and Utah (UT) with values of 2.102 and —2.679 respectively, both larger than
2 in absolute value.

The externally studentized residuals are computed from (8.3). For KY, we first compute
S%Ky), the MSE from the regression computed without the KY observation. From (8.2), this is

= 1.6005
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given by
2 _ (n— k)s® — eKY/(l — hky)
) T (n—k—1)
(46 — 3)(0.16343) —(0.23428)2 /(1 — 0.19775)
= = 0.025716
(46 —3—1)

From (8.3) we get

o o EKY 0.23428
B = VT —hry  0.16036/T —0.19775

This externally studentized residual is distributed as a t-statistic with 42 degrees of freedom.
However, e}y does not exceed 2 in absolute value. Again, €%, and ef; are 2.193 and —2.901
both larger than 2 in absolute value. From (8.13), the change in the regression coefficients due
to the omission of the KY observation is given by

1.6311

~

B = Beyy = (X'X)agyery/(1 - hiy)

Using the fact that

30.929816904  4.8110214655 —6.679318415
(X'X)7! = | 4.81102114655 3.9447686638 —1.177208398
—6.679318415 —1.177208398 1.4493372835

and 2y = (1, —0.03260,4.64937) with exy = 0.23428 and hiy = 0.19775 one gets

(B — Bixy)) = (—0.082249, —0.230954, 0.028492)

In order to assess whether this change is large or small, we compute DFBETAS given in (8.19).
For the KY observation, these are given by

Bi—Biuky)y  —0.082449

DFBETASy,; = = =
o (x'x);}  0-160361/30.9208169

—0.09222

S(KY)

Similarly, DFBETAS gy = —0.7251 and DFBETAS ky,3 = 0.14758. These are not larger than
2 in absolute value. However, DFBETAS iy, is larger than 2/y/n = 2/ V46 = 0.2949 in absolute
value. This is the size-adjusted cutoff recommended by Belsley, Kuh and Welsch (1980) for large
n.

The change in the fit due to the omission of the KY observation is given by (8.21). In fact,

DFFITky = Yky — Y(Ky) = iy (B - B(KY)]

=(1,—-0.03260,4.64937) [ —0.082249 | —0.05775
—0.230954
—0.028492
or simply
h 0.19775)(0.23428
DFFIT oy — LY eRy I ) _ 0.05775

(I—hgy)  1-0.19775
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Scaling it by the variance of y(xyy we get from (8.22)

hiy )1/2 N _< 0.19775

1/2
—_— 1.6311) = 0.
exy T 0.19775) (1.6311) = 0.8098

DFFITS gy = (1 5
— NKY

This is not larger than 2 in absolute value, but it is larger than the size-adjusted cutoff of
2/k/n =2,/3/46 = 0.511. Note also that both DFFITS gr = 0.667 and DFFITSyr = —0.888
are larger than 0.511 in absolute value.

Cook’s distance measure is given in (8.25) and for KY can be computed as

e2 hiy (0.23428)2 0.19775
D2 _ Ky — = 0.21046
kv(s) =35 ((1 - hKY)2> <3(0.16343)2> ((1 - 0.19775)2)
The other two large Cook’s distance measures are DR 5(s) = 0.13623 and D?.(s) = 0.22399,
respectively. COVRATIO omitting the KY observation can be computed from (8.28) as

s2 k 3
(KY) 1 0.025716 1
COVRATIOky = = = 1.1125
Ky < 52 ) 1— hry ((0.16343)2 (1 —0.019775)

which means that COVRATIO gy — 1/ = 0.1125 is less than 3k/n = 9/46 = 0.1956.
Finally, FVARATIO omitting the KY observation can be computed from (8.29) as

82
(KY) 0.025716
FVARATIOky = = = 1.2001
VARATIOky s2(1— hgy)  (0.16343)2(1 — 0.19775) 00

By several diagnostic measures, AR, KY and UT are influential observations that deserve special
attention. The first two states are characterized with large sales of cigarettes. KY is a producer
state with a very low price on cigarettes, while UT is a low consumption state due to its high
percentage of Mormon population (a religion that forbids smoking). Table 8.3 gives the predicted
consumption along with the 95% confidence band, the OLS residuals, and the internalized
student residuals, Cook’s D-statistic and a plot of these residuals. This last plot highlights the
fact that AR, UT and KY have large studentized residuals.

8.2 Recursive Residuals

In Section 8.1, we showed that the least squares residuals are heteroskedastic with non-zero co-
variances, even when the true disturbances have a scalar covariance matrix. This section studies
recursive residuals which are a set of linear unbiased residuals with a scalar covariance matrix.
They are independent and identically distributed when the true disturbances themselves are
independent and identically distributed.? These residuals are natural in time-series regressions
and can be constructed as follows:

1. Choose the first t > k observations and compute ﬁt = (X]X;)"'X]Y; where X; denotes
the ¢ x k matrix of ¢ observations on k variables and Y/ = (y1,...,y:). The recursive
residuals are basically standardized one-step ahead forecast residuals:

west = (o1 — 241 B/ 1+ 2y (XIX0) e (8:30)
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Table 8.2 Diagnostic Statistics for the Cigarettes Example

*

OBS STATE LNC LNP LNY PREDICTED e é e Cook’s D Leverage DFFITS COVRATIO
1 AL 4.96213 0.20487  4.64039 4.8254 0.1367 0.857 0.8546 0.012 0.0480 0.1919 1.0704
2 AZ 4.66312 0.16640  4.68389 4.8844  -0.2213 -1.376  -1.3906 0.021 0.0315 -0.2508 0.9681
3 AR 5.10709 0.23406  4.59435 4.7784 0.3287 2.102 2.1932 0.136 0.0847 0.6670 0.8469
4 CA 4.50449 0.36399  4.88147 4.6540 -0.1495 -0.963 —-0.9623 0.033 0.0975 -0.3164 1.1138
5 CT 4.66983 0.32149  5.09472 4.7477  -0.0778  -0.512  -0.5077 0.014 0.1354 -0.2009 1.2186
6 DE 5.04705 0.21929  4.87087 4.8458 0.2012 1.252 1.2602 0.018 0.0326 0.2313 0.9924
7 DC 4.65637 0.28946  5.05960 4.7845 -0.1281 -0.831  —0.8280 0.029 0.1104 -0.2917 1.1491
8 FL 4.80081 0.28733  4.81155 4.7446 0.0562 0.352 0.3482 0.002 0.0431 0.0739 1.1118
9 GA 4.97974 0.12826  4.73299 4.9439 0.0358 0.224 0.2213 0.001 0.0402 0.0453 1.1142

10 1D 4.74902 0.17541  4.64307 4.8653 -0.1163  -0.727 -0.7226 0.008 0.0413 -0.1500 1.0787
11 IL 4.81445 0.24806  4.90387 4.8130 0.0014 0.009 0.0087 0.000 0.0399 0.0018 1.1178
12 IN 5.11129 0.08992  4.72916 4.9946 0.1167 0.739 0.7347 0.013 0.0650 0.1936 1.1046
13 TA 4.80857 0.24081  4.74211 4.7949 0.0137 0.085 0.0843 0.000 0.0310 0.0151 1.1070
14 KS 4.79263 0.21642  4.79613 4.8368  -0.0442  -0.273  -0.2704 0.001 0.0223 -0.0408 1.0919
15 KY 5.37906  —0.03260  4.64937 5.1448 0.2343 1.600 1.6311 0.210 0.1977 0.8098 1.1126
16 LA 4.98602 0.23856  4.61461 4.7759 0.2101 1.338 1.3504 0.049 0.0761 0.3875 1.0224
17 ME 4.98722 0.29106  4.75501 4.7298 0.2574 1.620 1.6527 0.051 0.0553 0.4000 0.9403
18 MD 4.77751 0.12575  4.94692 4.9841  -0.2066 -1.349 -1.3624 0.084 0.1216 -0.5070 1.0731
19 MA 4.73877 0.22613  4.99998 4.8590 -0.1202 -0.769 -0.7653 0.018 0.0856 —-0.2341 1.1258
20 MI 4.94744 0.23067  4.80620 4.8195 0.1280 0.792 0.7890 0.005 0.0238 0.1232 1.0518
21 MN 4.69589 0.34297  4.81207 4.6702 0.0257 0.165 0.1627 0.001 0.0864 0.0500 1.1724
22 MS 4.93990 0.13638  4.52938 4.8979 0.0420 0.269 0.2660 0.002 0.0883 0.0828 1.1712
23 MO 5.06430 0.08731  4.78189 5.0071 0.0572 0.364 0.3607 0.004 0.0787 0.1054 1.1541
24 MT 4.73313 0.15303  4.70417 4.9058  -0.1727 -1.073  -1.0753 0.012 0.0312 -0.1928 1.0210
25 NE 4.77558 0.18907  4.79671 48735 -0.0979 -0.607 -0.6021 0.003 0.0243 -0.0950 1.0719
26 NV 4.96642 0.32304  4.83816 4.7014 0.2651 1.677 1.7143 0.065 0.0646 0.4504 0.9366
27 NH 5.10990 0.15852  5.00319 4.9500 0.1599 1.050 1.0508 0.055 0.1308 0.4076 1.1422
28 NJ 4.70633 0.30901  5.10268 4.7657 -0.0594 -0.392 -0.3879 0.008 0.1394 -0.1562 1.2337
29 NM 4.58107 0.16458  4.58202 4.8693 0.2882 1.823 1.8752 0.076 0.0639 0.4901 0.9007
30 NY 4.66496 0.34701  4.96075 4.6904 -0.0254 -0.163 -0.1613 0.001 0.0888 -0.0503 1.1755
31 ND 4.58237 0.18197  4.69163 4.8649  -0.2825 -1.755  -1.7999 0.031 0.0295 -0.3136 0.8848
32 OH 4.97952 0.12889  4.75875 4.9475 0.0320 0.200 0.1979 0.001 0.0423 0.0416 1.1174
33 OK 4.72720 0.19554  4.62730 4.8356 0.1084 0.681 0.6766 0.008 0.0505 0.1560 1.0940
34 PA 4.80363 0.22784  4.83516 4.8282  -0.0246  -0.153  -0.1509 0.000 0.0257 -0.0245 1.0997
35 RI 4.84693 0.30324  4.84670 4.7293 0.1176 0.738 0.7344 0.010 0.0504 0.1692 1.0876
36 SC 5.07801 0.07944  4.62549 4.9907 0.0873 0.555 0.5501 0.008 0.0725 0.1538 1.1324
37 SD 4.81545 0.13139  4.67747 4.9301  -0.1147 -0.716  -0.7122 0.007 0.0402 -0.1458 1.0786
38 TN 5.04939 0.15547  4.72525 4.9062 0.1432 0.890 0.8874 0.008 0.0294 0.1543 1.0457
39 TX 4.65398 0.28196  4.73437 4.7384  -0.0845 -0.532 -0.5271 0.005 0.0546 —-0.1267 1.1129
40 uT 4.40859 0.19260  4.55586 4.8273 -0.4187 -2.679  -2.9008 0.224 0.0856 -0.8876 0.6786
41 vT 5.08799 0.18018  4.77578 4.8818 0.2062 1.277 1.2869 0.014 0.0243 0.2031 0.9794
42 VA 4.93065 0.11818  4.85490 4.9784  -0.0478  -0.304 -0.3010 0.003 0.0773 -0.0871 1.1556
43 WA 4.66134 0.35053  4.85645 4.6677  -0.0064 -0.041  -0.0404 0.000 0.0866 -0.0124 1.1747
44 VA% 4.82454 0.12008  4.56859 4.9265 -0.1020 -0.647 -0.6429 0.011 0.0709 -0.1777 1.1216
45 WI 4.83026 0.22954  4.75826 4.8127 0.0175 0.109 0.1075 0.000 0.0254 0.0174 1.1002

46 WY 5.00087 0.10029  4.71169 4.9777 0.0232 0.146 0.1444 0.000 0.0555 0.0350 1.1345
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188 CHAPTER 8: Regression Diagnostics and Specification Tests

2. Add the (t + 1)-th observation to the data and obtain Btﬂ = (X{ 11 Xe41) P X i
Compute wyyo.

3. Repeat step 2, adding one observation at a time. In time-series regressions, one usually
starts with the first k-observations and obtain (T' — k) forward recursive residuals. These
recursive residuals can be computed using the updating formula given in (8.11) with
A= (X{X;) and a = —b = xy ;. Therefore,

(Xt Xe1) ™H = (X0X0) ™ = (XX0) ™ ezt (X Xe) ™/ [Lhat (Xp X)) (8:31)
and only (X]X;)~! have to be computed. Also,

B = B+ (X X)) e (yerr — 1 80)/ frn (8.32)

where f;11 =1+ méH(Xfth)_lxtH, see problem 13.

Alternatively, one can compute these residuals by regressing Y;y1 on X1 and dy1q where
dir1 = 1 for the (¢ + 1)-th observation, and zero otherwise, see equation (8.5). The estimated
coefficient of d;y1 is the numerator of w;y1. The standard error of this estimate is s;41 times
the denominator of wy 1, where sy;11 is the standard error of this regression. Hence, wyy1 can
be retrieved as s,y multiplied by the t-statistic corresponding to d;yi. This computation has
to be performed sequentially, in each case generating the corresponding recursive residual. This
may be computationally inefficient, but it is simple to generate using regression packages.

It is obvious from (8.30) that if u; ~ IIN(0, 02), then w11 has zero mean and var(w1) = 0.
Furthermore, w1 is linear in the y’s. Therefore, it is normally distributed. It remains to show
that the recursive residuals are independent. Given normality, it is sufficient to show that

cov(wiyy,wsr1) =0 for t#£s;t,s=k,...,T—1 (8.33)

This is left as an exercise for the reader, see problem 13.
Alternatively, one can express the T' — k vector of recursive residuals as w = C'y where C' is
of dimension (T' — k) x T as follows:

[ 712+1(X12Xk)71X1/c 1 0...0 ]
v fr+1 vV e+t
C = 7m2(X£—1Xt—1)_1X£—1 1 8.34
o += 0....0 (8.34)
_${11(X,3~71XT,1)71X%71 1
L Vir Vir J

Problem 14 asks the reader to verify that w = C'y, using (8.30). Also, that the matrix C satisfies
the following properties:

(i) CX =0  (ii) CC'=Ir_,  (iii) C'C = Px (8.35)
This means that the recursive residuals w are (LUS) linear in y, unbiased with mean zero and

have a scalar variance-covariance matrix: var(w) = CE(uw/)C" = o%Ir_},. Property (iii) also
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means that w'w = y'C'Cy = y'Pxy = €’e. This means that the sum of squares of (T — k)
recursive residuals is equal to the sum of squares of T' least squares residuals. One can also show
from (8.32) that

RSSyt1=RSS;+wi,, for t=k,...,T—1 (8.36)

where RSS; = (V3 Xtﬂt) (Y Xtﬁt) see problem 14. Note that 