The Practical Guide to Defect Prevention

DEFECT by Marc McDonald; Robert Musson; Ross Smith
PREVENTION

-$ Publisher: Microsoft Press

Pub Date: March 07, 2007

Print ISBN-10: 0-7356-2253-1

Print ISBN-13: 978-0-7356-2253-1
Pages: 480

Overview

This practical, hands-on guide captures, categorizes, and builds a process of best practices to avoid
creating defects during the development process rather than fixing them after extensive analysis.
While there are various proprietary and competing standards for reducing software defects, these
methods suffer from issues surrounding timeliness, effectiveness, or cost. What's more, many other
books focus on fixing errors after they've been introduced. This guide, however, presents practical
methods for reducing defect introduction through prevention and immediate detection and by
moving the detection of defects closer to their introduction. Written by experts with over a century
of software development experience among them, this book is not an idealized academic book.

Instead, it distills many hard-won lessons into a single, workable lifecycle process that will help
deliver better quality software.

Acknowledgments

After many years of studying how and why people make mistakes (and making plenty of them
ourselves), we realize how common it is for humans to make errors of omission. It's our hope that
we have successfully prevented any errors of omission in this section. This book stems primarily
from the work of the Microsoft Windows Defect Prevention team, and therefore the first thanks must
go to Darren Muir, General Manager of Windows Core Test, for having the vision and foresight to
fund our efforts, and to his boss at the time of our inception, Brian Valentine, Vice President of
Windows Core Operating System Division, for his confidence in this work, his faith in our ideas, and
for our day jobs. None of this would be possible without these two people recognizing the long-term
benefits of an investment in researching and developing these techniques.

This book is the work of many authors. Although only three of us are listed on the cover, we must
thank each of the contributing authors for their work on their respective chapters, as well as for
their time, effort, and contributions to the entire book, which also includes numerous reviews of
other authors' chapters as well, providing valuable feedback and suggestions.

Dan Bean Chapter 1, "Defect Prevention," and Chapter 13, "FMEA, FTA, and Failure Modeling"
David Catlett Chapter 6, "Improving the Testability of Software," and Chapter 8, "Risk Analysis"
Lori Ada Kilty Chapter 7, "Software Measurement and Metrics"

Joshua Williams Introduction and Chapter 20, "Pulling It All Together"

We must also acknowledge the fantastic reviewing work of Ed Triou, Test Architect on the Microsoft
SQL Server team. His careful study, review, and feedback on each chapter has improved this book
immensely—trust us, you will enjoy it more as a result of Ed's efforts. We would like to thank
Brendan Murphy from Microsoft Research in Cambridge for contributing lots of data to our cause,
and Nachi Nagappan, Tom Ball, and Thirumalesh Bhat from Microsoft Research in Redmond for their
help with the risk analysis work. Thanks to Patrick Wickline, another Microsoft researcher, and Chris
Walker, Test Architect in the Secure Windows Initiative, for their help with our root cause analysis
efforts. Thanks to Harry Emil, developer on the Defect Prevention team, for his help with the
companion Web site www.defectprevention.org.

Thanks also to a long list of talented developers from the Windows Core Organization for creating a
range of tools to support these techniques, including Harry, Jinu Joseph, Francie "Viva Pifiata"
Emory, Tim "Forza 2" Graves, Jeff "WFH" Forde, Guru "Black Friday" Vasisht, and James "Eat My
Voltage" O'Rourke. Thanks to Jacqueline Richards, Program Manager for Microsoft Windows Server
Customer program, for help with scenario voting, and to William Rios, for his patience with us and
the efforts on metrics and reporting. Thanks also to Ben Sawyer, founder of the Serious Games
Initiative, for his inspiration and help with productivity games.

Additionally, thanks to the many teams, managers, mentors, friends, and colleagues we have
worked with over the years who have helped us learn from our own mistakes. And, in no particular
order, we would like to thank the Microsoft Test Architect Group, Klaas Langhout, MSDN Test
Center, James Rodrigues, Angelika Kinneman for her work on games, Aseem Badshah of
Scriptovia.com for his help with scenario voting, Monte Christensen for supporting and continuing
the risk analysis work, the WIinSE crew Junaid Ahmed, Alex Tarvo, and Koushik Rajaram for taking
risk analysis to the next level, Craig Schertz, Kevin Burrows and the Coverage Tools Team, folks
from XNA: Michele Coady, Aaron Stebner, and Dean Johnson, who took the time to review various
chapters and provide much appreciated feedback.

Even with the help, support, and assistance of every one of the preceding people, you would not be
reading this now if it weren't for the excellent team at Microsoft Press—the most amazing editor
we've ever worked with, Lynn Finnel, who totally kept us on track (actually, we never were on
track—she kept us from going too far off track), copy editor Christina Palaia, and Stephen Sagman,

who worked on production, art, and proofs. Thanks to our editor Devon Musgrave for his help in
getting things organized. Thanks also to Microsoft Press Commissioning Editor Ben Ryan.

And thank you, our readers.
We hope you enjoy the book and find it useful.

Please send along any feedback you have—we'd love to hear from you!

Introduction

Progress, far from consisting in change, depends on retentiveness. When change is absolute there
remains no being to improve and no direction is set for possible improvement: and when experience
is not retained, as among savages, infancy is perpetual. Those who cannot remember the past are
condemned to repeat it.

—George Santayana, The Life of Reason (1905)

People have been making mistakes since the beginning of time. More important, people have been
learning from their mistakes since the beginning of time.

Charles Darwin, on page 101 of Volume | of his epic The Descent of Man (1871), quotes Herbert
Spencer: "l believe that the experiences of utility organised and consolidated through all past
generations of the human race, have been producing corresponding modifications, which, by
continued transmission and accumulation, have become in us certain faculties of moral intuition—
certain emotions responding to right and wrong conduct, which have no apparent basis in the
individual experiences of utility."[*!

[|etter to Mr. Mill in Bain's Mental and Moral Science: A Compendium of Psychology and Ethics,
722; London; Longmans, Green, and Company, 1868.

How many times do you lock your keys in your car before you get a Hide-A-Key or buy a car with a
combination lock? How many checks do you have to bounce before you get overdraft protection or
fudge the balance to prevent the twenty dollar fee? How often do cell phones go off in meetings?
How many times are jail inmates accidentally released? There are thousands of simple, yet common
errors that people make every day. Because some people are employed as software developers, it's
only logical that errors appear in their work, too. For an assembly line worker in Detroit, a human
error might result in a new vehicle with a loose bolt in the trunk. For a restaurant worker in New
York City, a mistake might result in a burger without the requested extra pickles. For a software
developer in Redmond, a human error might result in a user's inability to print driving directions
downloaded from the Web.

The goal of this book is not to help you avoid locking your keys in your car. The goal of this book is
to provide a set of techniques to help software developers, project managers, and testers prevent
human errors, or defects, in their software.

More Info

This book has an associated Web site at www.defectprevention.org. Some of
the material in the book is available there, including examples, templates, and
reader-generated content.

Following the introduction, this book is organized in five sections that follow the migration of defects
through a project.

Part I, "Introduction to Defect Prevention," explains the goals behind the book and why you may
want to implement many of these practices in your organization. These chapters introduce the
concept of defect prevention, outline a number of prevention frameworks, and cover the economics
of investments in prevention techniques.

Chapter 1, "Defect Prevention," provides an overview of and introduction to the topic of preventing
defects. This includes describing what a software defect is, why defects occur, and what can be
done to prevent them. This chapter also introduces the concept of defect detection, analysis, and
prevention techniques and the factors to consider when determining the most appropriate defect
prevention strategy for your organization.

Chapter 2, "Defect Prevention Frameworks," contains information on selecting a process
improvement framework. The need for a framework is described and several popular frameworks
are presented. The chapter is useful for those unfamiliar with such frameworks as the Capabilities
Maturity Model or the Malcolm Baldrige Quality Framework.

Chapter 3, "The Economics of Defect Prevention," provides information on return on investment
(ROI) calculations for software. The intent is to provide the reader with enough information to
determine if a particular investment is worthwhile from a financial perspective. Additionally, an
example calculation provides a rationale for process improvement in general. The information is
useful for anyone seeking to invest in process improvements and also for those trying to estimate
the value of existing processes.

Part 11, "Defect Detection Techniques," focuses on techniques that are useful in improving product
quality.

Chapter 4, "Quality and the Development Process," discusses what quality is for a software product
and how the development method creates opportunities for defects. Software cannot be tested
exhaustively, so it is important to make it rare for a customer to encounter a defect and to have
zero tolerance for security defects. To a customer, there is no significant difference between a
problem that is a "real" defect and a problem based on a design defect. These concerns affect the
type of tests you write and how you measure quality. Writing software is a series of translations
from one form to another, and, except for compilation, human review is involved. Errors in
translation and loss of information typically occur.

Chapter 5, "Using Productivity Games to Prevent Defects," covers the use of games and competition
to focus individual or team effort on defect prevention activity. The challenges of software
development involve a variety of activities, and typical projects draw the focus toward immediate,
short-term activities, whereas the payoff for defect prevention investments are often longer term.
Productivity games and competition can help balance the time investments and draw attention to
the longer-term investments.

Chapter 6, "Improving the Testability of Software," explains the importance of designing
components and systems that can be tested easily so that defects are more readily discoverable
throughout the product development life cycle. This chapter introduces the Simplicity, Observability,
Control, and Knowledge (SOCK) model of testability. Targeted at design engineers and testers, this
chapter provides practical guidelines for improving testability.

Part 111, "Defect Analysis Techniques," showcases several important techniques to analyze defects
after they have been detected.

Chapter 7, "Software Measurement and Metrics," discusses the importance of building the right
foundation before gathering and reporting metrics. Though this chapter may seem to apply only to
managers or marketing personnel, it emphasizes the fact that everyone working on a project must
understand what is being measured and why—how metrics are ultimately tied to the business. For
example, what does measuring defect detection rates tell you? How will this either improve your
process or the quality of the product? How does that improvement turn into dollars, and is the
amount saved or earned worth making the change? Building a balanced scorecard for your business
can help justify defect prevention techniques and show how programs can affect the bottom line.

Chapter 8, "Risk Analysis," defines risk and how it relates to the software development life cycle.
Using a Reader's Digest, "Drama in Real Life" river rafting illustration, it provides a unique look at
how important it is to understand and predict areas of risk as the software project moves
downstream toward completion. This chapter provides a practical risk analysis model that you can
apply to any software project. The model helps project decision makers and engineers understand
the risk involved when changes are made during the software development life cycle.

Chapter 9, "Using Simulation and Modeling for Organizational Innovation," provides a statistical
technique for process analysis that is useful for companies implementing Capability Maturity Model
Integration (CMMI) level 4 practices. It provides a means to analyze process improvements,

estimate schedules based on historical data, and analyze details of subprocesses as they relate to
the organizational process. The chapter provides a process for modeling and develops an example
from a simple model to a very detailed process that includes dependencies between different
organizational groups. The chapter is useful for anyone planning process improvements and also for
project managers looking to improve estimates of schedules and create estimates of quality.

Chapter 10, "Defect Taxonomies," discusses how to modify your defect reporting system to provide
information for the prevention and reduction of defects as well as surface possible best (or worst)
practices. Typical defect reporting systems track a defect through the correction process but provide
little data-minable information to improve the development and testing processes. The learning
from defect processes breaks down as a product becomes more complex or a development team
grows larger.

Chapter 11, "Root Cause Analysis," covers the popular defect prevention technique that provides a
structured methodology for analyzing the cause and effect relationships of an event or defect in
pursuit of a corrective action that eliminates the cause(s) of problems. There are six phases to a
typical root cause analysis study, and this chapter outlines how and when to apply this defect
analysis technique and how to use it to learn from defects discovered in the development process.

Part 1V, "Defect Prevention Techniques," begins to shift the focus to a longer-term view by covering
techniques to prevent defects.

Chapter 12, "Adopting Processes," provides a view of several popular processes with respect to
frameworks. It provides a brief discussion of problems associated with implementation and
improvement opportunities in existing processes. The chapter is useful for those seeking to make a
change or looking for change opportunities in an existing process.

Chapter 13, "FMEA, FTA, and Failure Modeling," introduces a couple standard defect prevention
techniques: Failure modes and effects analysis (FMEA) and fault tree analysis (FTA). Both FMEA and
FTA were originally introduced to improve reliability in such industries as the aerospace and
automotive industries where the risk of defects and failures can be significant and life threatening.
These same concepts can be applied to software development to help identify potential defects and
proactively address them to improve software reliability and quality. FMEA and FTA are
complementary techniques in that a failure mode identified by FMEA can become the top failure
event analyzed in FTA. Combining the use of FMEA and FTA into a unified failure model has
conceptual similarities to the threat models used in security threat modeling. The chapter concludes
with a brief illustration of one possible approach.

Chapter 14, "Prevention Tab," provides a useful technique for gathering defect prevention data at
the point of experience, when the knowledge is the richest. This technique can be implemented on
any project, small or large, and offers development personnel an easy way to provide suggestions
and input on how defects can be prevented.

Part V, "A Culture of Prevention," explains how long-term organizational and cultural changes are
necessary to implement a successful defect prevention program.

Chapter 15, "Scenario Voting," discusses a technique you can use to integrate more tightly the
voice of the customer in the development process. By using this customer feedback technique,
software developers can take advantage of the wisdom of the crowd in assessing the viability and
the quality of their software.

Chapter 16, "Creating a Quality Culture," discusses the typical impediments to creating a culture
that values quality and methods to improve your culture. A quality culture can't be decreed; it is a
value that everyone needs to accept and act on. Because quality and customer perception are
intertwined, customer focus is a value that helps instill a culture of quality. Establishing a quality
culture can be a long process, and it is often difficult to measure progress.

Chapter 17, "Moving Quality Upstream," discusses how improving quality at the start of
development reduces defects downstream. Maintaining focus on the customer from the start is an

important part of this, as is doing the due diligence during the predesign phases that minimizes
design errors surfacing late in development. Customer focus is more than just scenarios; it is
understanding a customer's mental model of the software's functionality. A development process
that reduces defects and provides earlier customer verification is described as well as a future
process oriented around both customer focus and reducing translation errors in progressing from
vision to code.

Chapter 18, "Rewards, Motivation, and Incentives," outlines a variety of management techniques
you can use to help motivate individuals and teams to focus their efforts away from the immediate
short-term tasks and toward a bigger-picture quality view. Preventative actions require forward
thinking and the ability to act on things before they happen. Showcasing mistakes as a learning
opportunity is not a natural human behavior, and this chapter outlines a variety of techniques to
help inspire efforts for long-term quality improvement through defect prevention activity.

Chapter 19, "Knowledge Management and Communication," covers how the flow of information can
affect defects. As your product becomes more complex, the team grows, or the team becomes
geographically dispersed, it is no longer possible for any one person to know everything about a
product. Specialization—knowing about only a limited area rather than the entire product—is a
typical approach to solving this problem. However, today's products often have intertwining
dependencies that require broader knowledge. Methods to improve communication between fields of
specialization are discussed as well as how to use size as an advantage rather than seeing it only as
a problem.

Chapter 20, "Pulling It All Together," discusses turning your development process from a series of
independent steps into an optimized workflow by analyzing each phase of the product and how it
affects others. Each role plays a part in producing a quality product, and by coordinating quality
practices throughout the development process, teams can create both the most efficient process
and the highest quality output. Successful teams rely on effective communication, good workflows,
and a mindset for continuous improvement. This chapter discusses these practices and provides
personal experiences to demonstrate them. Although it was written primarily with the quality
assurance staff in mind, project planners and managers can also benefit from a quick read of this
chapter.

Much of this book stems from the experience of the Microsoft Windows Defect Prevention team, and
although there are some specific Microsoft examples throughout the book, the goal is to describe
the techniques in a way that is applicable to all software development efforts, large and small.

Many books have been written on the topics of software quality assurance, testing, agile
development, and other related subjects. This book is meant to augment, not replace, those.
Several successful quality assurance and defect detection and analysis techniques are not covered
in this book because they are already well covered elsewhere. Where applicable, we've included
references to other sources, and we maintain a list on the companion Web site at
www.defectprevention.org.

Who This Book Is For

This book is for software developers, product planners, senior managers, project managers, and
testers who want to learn practical ways to improve product quality by preventing defects in their
software. This is a practical guide, written to be understandable and applicable regardless of
organizational size, development language, or environment. Different chapters will make sense
when you are at different phases of the development cycle; each chapter has a slightly different
audience from the others. The introductory chapters provide a good overview and some context for
how, why, and where the techniques can be applied. We suggest you read about techniques that
may be applicable to you now, and then skim through the other chapters rather than trying to read
the book cover to cover at first. Later, you can return to chapters that have become applicable as
you move through the development process.

Support for This Book

Every effort has been made to ensure the accuracy of this book. As corrections or changes are
collected, they will be added to a Microsoft Knowledge Base article.

Microsoft Press provides support for books at the following Web site:

http://www.microsoft.com/learning/support/books/

Questions and Comments

If you have comments, questions, or ideas regarding the book or the companion content, or
questions that are not answered by visiting the preceding site, please send them to Microsoft Press
by e-mail to

mspinput@microsoft.com
Or by postal mail to

Microsoft Press

Attn: The Practical Guide to Defect Prevention Editor
One Microsoft Way

Redmond, WA 98052-6399

Please note that Microsoft software product support is not offered through the preceding addresses.

Part I: Introduction to Defect Prevention

In this part:
Chapter 1: Defect Prevention
Chapter 2: Defect Prevention Frameworks

Chapter 3: The Economics of Defect Prevention

Chapter 1. Defect Prevention

To make no mistakes is not in the power of man; but from their errors and mistakes the wise and
good learn wisdom for the future.

—Plutarch, Greek biographer and moralist (AD 46—120)
You just opened this book and saw that the first page of the first chapter is printed upside down.

How did you react? Were you surprised? Annoyed? Angry? All of these emotions? Did the printing
defect impact your initial impression of the book and its quality?

All products can have defects that impact the user, and some are more annoying than others. If this
page only included minor spelling and grammar mistakes, you may have just noticed them, but
moved on. However, for a major printing mistake you probably reacted much differently. Did you
check the next page to see if it was printed correctly and then just turn the book over to read this
page? Did this make you question whether to buy this book? If you had already purchased the
book, did it make you think about exchanging if for a good copy or asking for a refund (please
don't).

These are all normal reactions to finding a defect in any product, including software. Customers can
choose to ignore the defect, accept it, consider a workaround, seek an exchange, or return the
product for a refund. No matter which choice is made, their satisfaction with the product usually
decreases. To make matters worse, customers experiencing product defects create additional
product costs, such as direct costs from refunds and indirect costs from negative recommendations
and lost sales. Ultimately, these are all costs of poor quality that will affect customer satisfaction
and the bottom line of a business. To avoid these costs, the best option is to invest in defect
prevention.

Figure 1-1. The 24-cent Inverted Jenny stamp at the
Smithsonian National Postal Museum

i

Why should you and your software development team be concerned about defects? Because your
goal is to produce high-quality software that provides value to users and meets their expectations.
To accomplish this goal, your software, like a book with printed pages, must be as defect free as
possible. Customers expect it to be so, and if you do not provide products that are defect free, your
customers may not be your customers for long. Suffice it to say that any time there is a defect, it
will eventually cost you something. In addition to money, it may also cost you a development team
that is frustrated and worn out from continually fixing defects or a dissatisfied customer who
switches to someone else's software product in the future. We wrote this book to help you avoid
defects and their associated costs.

Tip

If you are an experienced software engineer and thoroughly understand
software defects and why they occur, you may want to skip directly to the
section titled "What Can Be Done?" later in this chapter.

If you are reading this book, there is a pretty good chance you have experienced software problems
and understand the impact they can have. Consider the last time you lost work because of an
application crash, or a time when you could not figure out how to accomplish a task using the
software. How did that make you feel? Do you want users to have these same kinds of experiences
with your software? Use your personal experiences as motivation to learn how to prevent these
types of defects in the future. Sometimes this is called "walking in your customer's shoes."

On the other hand, perhaps you believe that software will always have defects. After all, software is
created by humans and "to err is human"; therefore, defects must be inevitable, right? Many people
feel this way. Following this logic, should a software development team simply accept the
inevitability of defects and the human errors that cause them? The answer must be an emphatic
"No!" Defects can and must be prevented because users deserve better—they deserve high-quality
software.

Improved software quality can be accomplished in a variety of ways, but the best approach is defect
prevention because the benefits realized through prevention efforts can be reapplied in the future.
Our goal for this book is to provide you with a high-level, practical guide covering defect prevention
techniques that apply to all stages of software development and many different types of defects.
Our hope is that the techniques outlined in this book will help software development teams improve
their software over the long term to enhance the quality of the user experience. Although much has
already been done and written about preventing defects in software, opportunities for improvement
remain.

What Is a Software Defect?

A software defect is a deficiency in a software product that causes it to perform unexpectedly. From
a software user's perspective, a defect is anything that causes the software not to meet their
expectations. In this context, a software user can be either a person or another piece of software. A
few examples are listed in Table 1-1. From a software developer's perspective, a defect is anything
that must be corrected in a software work product.

Table 1-1. Software Defects from the User's Perspective

Typical Examples of Software Defects

User Expectation The software will help me accomplish a task

Software Defect Desired software functionality is missing

User Expectation Clicking on the button performs the task | want to do
Software Defect Clicking on the button does nothing or not what | want it to do
User Expectation A file can be successfully copied to another location

Software Defect The file becomes corrupted during the copy process

User Expectation Calling a method in the API will perform as documented
Software Defect The API fails due to an undocumented change to the registry
Less Obvious Examples of Software Defects

User Expectation The software will hellp me avoid mistakes (for example, spelling errors)

Table 1-1. Software Defects from the User's Perspective

Typical Examples of Software Defects

Software Defect A spelling error caused by using a valid word incorrectly is not detected
User Expectation The software will respond quickly

Software Defect The software responds too slowly from the user's perspective

User Expectation The software is secure from hackers

Software Defect Hackers are able to exploit vulnerability and attack the software

User Expectation For a "fatal error," a return code will be received so impact can be mitigated

Software Defect No fatal error return code is sent, and the software freezes

Defects can be introduced during any stage of the development cycle regardless of whether you are
following the sequential requirements-design-implementation-verification-maintenance phases of
the waterfall model or the rapid iterations of agile software development. The goal of this book is
not to espouse any one development approach over another. However, it is important to have a
context when referring to defects and the relative point in the development cycle when they can
occur. Consequently, to provide a frame of reference the following product life cycle will be used:

Figure 1-2. Reference software product life cycle

Phases: Product Definition ===l Product Development === Product Servicing

Stages: Value Propaosition Requirements Maintenance
Design
Implementation
Verification

Release

In the Product Definition phase, the Value Proposition stage completes an analysis of what is
happening in the marketplace. In the Product Development phase, the Requirements stage defines
the scenario requirements and features of the product. The Design stage determines how the
features will be built. The Implementation stage focuses on coding, documentation, and internal
testing. The Verification stage focuses on customer beta testing of completed features in the
product. The Release stage yields a completed product ready for customers. In the Product
Servicing phase, the Maintenance stage provides ongoing maintenance for the product, including
hotfixes, security updates, and service packs.

No matter how or when it occurs, the severity of a defect will vary based on the impact it has on a
user. A software program that crashes or stops working has a major defect that prevents its use. A
software program that presents an inconsistent user interface has a minor defect that may lessen
its value or hinder user productivity, but doesn't actually prevent its use. Based on project
schedules, available resources, and the impact and severity of the defects, you will need to prioritize
some defects to be fixed before others. Although this prioritization can be the reality, the ultimate
goal should still be to create and release software that is defect free.

Making High-Quality Software the Goal

To have a goal of high quality, you first need to understand what high-quality software means.
Traditionally, high quality has meant a lack of defects found during inspection and testing.
Unfortunately, as pointed out in Chapter 4, "Quality and Product Development," testing can only
indicate a lack of quality and it is not possible to test software completely. Consequently, the
number of defects found in test cannot be the only metric used to assess software quality. In many
cases, quality is in the eye of the beholder, so you also need to evaluate subjective quality based on
customer perceptions and expectations. (See Chapter 15, "Scenario Voting.") In terms of perceived
quality, software defects caused by unmet customer expectations are just as important as defects
related to broken functionality. Therefore, they both need to be taken into consideration. The cost of
a problem found late in the development process can be significant. Repair costs rise as the
development cycle progresses because of increased rework caused by design and coding changes,
retesting, and impact on other dependent software. Industry studies have shown that a defect that
costs 1x to fix in design could cost 100x to fix after the software is released.!™! Clearly, everyone—
from product designers to product developers and product stakeholders—will benefit if the
development team can prevent defects early rather than discovering and fixing them later.

W B. Boehm and V. Basili, "Software Defect Reduction Top 10 List,” IEEE Computer Society 34, no. 1
(January 2001): 135-137.

Critical defects include issues such as lost data, data corruption, and inadequate security that
prevent a user from having a reliable computing experience. A solid design helps mitigate the risk of
critical defects. Fortunately, defect prevention techniques can be applied early in the design stage to
improve the quality of the design and minimize risks.

Over the years, many different defect prevention techniques have evolved to manage the "defect
introduction” opportunities inherent in product development. Many of these techniques can be
applied to software development. In the case of software development, the applicability and
effectiveness of these techniques can vary dramatically across different projects. Therefore, it is
important to consider which defect prevention techniques will be the most useful for your software
project. The purpose of this book is to highlight practical and effective defect prevention techniques
to help you make those choices and select the most beneficial techniques for your needs.

We have met the enemy and he is us.

—Walt Kelly, Pogo comic strip

Understanding Why Software Defects Occur

A defect in software results from some type of mistake. Usually these mistakes are a result of
human error, but sometimes they are caused by systemic errors in the development process.
Mistakes can also result from faulty development tools, a misunderstanding of customer
requirements, or other issues that arise in the course of software development. Fortunately, not
every mistake leads to a defect, but almost all defects can be traced back to some type of mistake
(see Table 1-2).

Table 1-2. Mistakes and Resulting Software Defects

Typical Mistakes That Cause Software Defects

Mistake Communication difficulties between customers and software developers
Software Desired software functionality is missing
Defect

Mistake Developer overlooks a logic error in the code

Table 1-2. Mistakes and Resulting Software Defects

Typical Mistakes That Cause Software Defects

Software Clicking on the button does nothing

Defect

Mistake Developer forgets error checking in the file copy code

Software A corrupted file is copied, and the software crashes

Defect

Mistake Developer does not understand the customer scenario

Software The software does not meet the customer's needs

Defect

Mistake Developer only tests the software using a fast computer and the performance
seems fine

Software The software responds too slowly from the perspective of a user with an older and

Defect slower computer

Mistake Developer does not review the code for software vulnerabilities

Software Hackers are able to exploit vulnerabilities and attack the software

Defect

Mistake Developer does not recognize a fatal error condition, so no return code is sent

Software Software does not return a code indicating a fatal error condition

Defect

Although it may be easy, or even fashionable, to blame a computer for causing a software defect, in
reality almost all defects can be attributed to some type of human error. Because computers are
machines, there is a possibility that the computer hardware is to blame, but in most cases software
defects result from mistakes made by people. Consequently, the study of human error offers a good
framework for determining and understanding why software defects really occur.

Analyzing the Bases of Human Error

The science of human error is a fascinating subject, and some tremendous research into
classification systems, causality models, and error reduction techniques has been done. Machine
plant safety, disaster planning, and prevention of catastrophic accidents are all areas where human
error studies have led to positive results. Investigation into human errors and their impact on
software development was initiated during the 1970s. Since then, research has continued, first
driven by interest in software safety and hazard analysis, and then more recently by interest in
software quality and security.

The study of human error is a broad topic, and it helps to start with an initial foundation. One view
of human errors draws its structure primarily from the work of James Reason.!! In this view, there
are three broad categories of errors that provide a framework for analysis: skill-based errors,
knowledge-based errors, and rule-based errors.

¥ James Reason, Human Error (Cambridge, UK: Cambridge University Press, 1990).

Skill-based errors are usually the obvious mistakes that occur when a person knows what to do, has
done it successfully in the past, and just "slipped up." Knowledge-based errors are mistakes made
because a person doesn't know everything about a problem space and therefore didn't know what

to do. Rule-based errors are mistakes made by following a rule; rule errors do not include mistakes
made where a rule could exist, just those made by applying or misapplying an existing rule.

Applying human error research to software defects can yield interesting insights. In particular, a
clear understanding of how and why people make mistakes can be useful in improving development
processes, coding and check-in rules, compiler settings, design principles, user research, quality
assurance efforts, and many other areas that require humans to do work. See Chapter 10, "Defect
Taxonomies," for more information.

An ounce of prevention is worth a pound of cure.

—Henry de Bracton, De Legibus, AD 1240

What Can Be Done?

Mistakes can be made in many different areas of the software development effort. Coding defects
are the most obvious, but mistakes can also occur in design, management, project planning, and
other activities throughout the organization. It often seems that the only real guarantee is that
mistakes will occur and some will cause software defects. Realizing this, most software development
teams invest heavily in testing as their primary focus for eliminating defects before the defects can
impact users.

Defect prevention requires investment with a different focus. An investment in defect prevention
emphasizes a more proactive and cost-effective way to eliminate software defects. Rather than
relying on testing to find software defects after they are introduced, defect prevention techniques
focus on preventing the introduction of defects in the first place. The basic theme of this book is
that defects can be prevented and that the software development process can be improved over
time, using a variety of techniques, to reduce the number of defects in software.

Using Detection, Analysis, and Prevention Techniques

Software quality and defect rates can be addressed at three levels. The first level is detection. This
is the most common approach to improving software quality. "Test quality into the software"—test
the software until all the discoverable defects are found and fixed. (See Chapter 6, "Improving the
Testability of Software" for more information.) Although this is a goal of all software development
teams, it is not possible to completely test software. However, what is possible is to detect many of
the defects, and there are many different ways to do that. Examples include static analysis tools,
automated test cases, and user beta testing. These methods can identify defects where they exist
but do little or nothing to prevent a similar defect from recurring elsewhere.

The next level of software quality improvement is achieved through analysis. At this level, time is
spent analyzing previously discovered defects to look for trends and insights into how they occurred
and why they were not detected earlier. See Chapter 11, "Root Cause Analysis," for more
information. Analyzing defects takes time and expertise, but the effort can yield significant benefits
when improvements are made based on the results.

Over the long term, the most effective level of quality improvement efforts is prevention. At this
level, specific techniques are used to proactively identify and eliminate potential defects. Also, the
findings from the detection and analysis levels can be used to modify processes and development
practices to eliminate the root causes of defects. These findings may also be applied to earlier
detection, thereby reducing repair and rework costs. Eliminating the defects and their root causes
improves the effectiveness of future development efforts as well. The ultimate goal of any quality
improvement effort should be to enable the development team to invest more time in defect
prevention activity.

What Is Different in a Prevention Organization

Most software development teams recognize the need to prevent defects and try a variety of
techniques to prevent them. However, most of these techniques focus on improved defect detection
(testing) and not on defect prediction and prevention. Because of issues such as schedule pressures
and insufficient resources, software teams are often constrained in their ability to invest in effective
quality assurance and quality improvement processes. While they work hard to try different
improvements and may even try some prediction and prevention techniques, the sustainable results
they want are never fully achieved.

To help software development teams attain sustainable results, organizations such as the Carnegie
Mellon Software Engineering Institute (SEl) have developed models like the Capability Maturity
Model (CMM) to give teams a way to assess the capabilities of their development process and also
provide a roadmap for improvement. See Chapter 2, "Defect Prevention Frameworks" for more
information. In the CMM five levels of process maturity, level 4 organizations predict defects and
manage quality using statistical process control techniques and level 5 organizations prevent defects
by quantitatively improving processes through innovative process and technological
improvements.[*! Because attaining this level of process maturity can help teams produce better,
faster and cheaper products with higher quality and better customer satisfaction, this would seem to
be a logical goal for all software development organizations. However, based on a 2006 profile of
CMM appraisal results, SEI determined that only 137 (7.6%) of the 1804 organizations undergoing
CMM appraisal were operating at level 4 and only 175 (9.8%) were operating at level 5.1 The
majority of the organizations were operating at a lower CMM maturity level with a focus on
detection and reaction, the first level of defect prevention and not on prediction and prevention.

W cMMI Product Team, CMMI for Development, Version 1.2, (Pittsburg, PA, Carnegie Mellon
Software Engineering Institute, August 2006)

@ cMMI Appraisal Program, Process Maturity Profile, Software CMM 2005 End-Year Update,
(Pittsburgh, PA, Carnegie Mellon Software Engineering Institute, March 2006)

Why is this? It's primarily because a focus on analysis and prevention can initially require more time
and resources, and although the return on investment is usually high, the costs can be significant. If
a project is on a tight schedule or budget, the project manager must decide if it is more effective to
ask senior engineers to invest their time in analyzing bugs and developing preventions or to have
them write new features and fix existing bugs in the current product to accelerate the ship date.
This creates a dilemma: make your boss happy by meeting a project deadline with some defects, or
make the project stakeholders and users happy by preventing defects at the expense of missed
deadlines and extra resource investments. Because software projects are typically rewarded upon
completion, project managers usually choose the short-term view and opt for completing the
current effort before investing in long-term quality improvement techniques. Although this can be a
prudent decision for them to make, it can be shortsighted for their organization and company in the
long run.

In contrast, a software development team that acknowledges and focuses on the potential of defect
prevention is enlightened. As a "prevention organization," it understands that analyzing defects and
applying the learning to drive continuous improvement can achieve high quality and significant
economic benefits over the long term. Although a prevention organization still has the normal
resource and scheduling challenges, it makes a conscious effort to invest in prevention activities.
The biggest difference between a detection organization and a prevention organization is that a
detection organization typically is in constant "fire drill" mode just trying to find and address all
defects, whereas a prevention organization is typically more optimistic, focused on the future, and
deliberate in its approach to improving quality.

We want to help you create your own prevention organization. There is an old adage that states, "If
you always do what you've always done, you'll always get what you've always got." That will not
happen in a prevention organization because a prevention organization concentrates on changing
the processes and conditions that lead to mistakes in the first place. Stephen R. Covey in The Seven
Habits of Highly Effective People,!™ talks about the importance of renewal and "sharpening the

saw." He states, "Renewal is the principle—and the process—that empowers us to move on an
upward spiral of growth and change, of continuous improvement." A prevention organization is
focused on sharpening the saw—continued renewal through improved tools, processes, and people.

W Stephen R. Covey, The Seven Habits of Highly Effective People (New York: Free Press, 1989).

Using Defect Prevention Techniques

With all due respect to F. W. Taylor,™ there is no "one best way" to prevent defects in software.
Over the years, a variety of prevention techniques have been developed for use in different stages
of the software development cycle. The purpose of all these techniques is to help predict, identify,
detect, and ultimately prevent defects before they can affect users.

4 F.W. Taylor, also known as the "father of scientific management," advocated the analysis of work
using time and motion studies to determine "the one best way" to do something.

The techniques can be grouped into three categories based on their goals, testing focus, and how
proactive or reactive they are within the software development process. The three categories are as
follows:

e Defect detection techniques
e Defect analysis techniques
e Defect prevention techniques

(Please note that defect prevention techniques, as used here, is a subcategory of specific techniques
in the overall category of defect prevention.)

Defect Detection Techniques

In terms of software development, a wide variety of testing techniques can be used to identify
software defects. Functional testing, boundary testing, low-memory tests, code inspection, and end
user beta testing are all effective techniques. Defect detection techniques such as these are used in
most software development projects to discover defects and improve product quality. Software
testing is an extensive topic and the subject of many excellent books, such as Hunting Security
Bugs!™ and the How to Break Software series,™ so these testing techniques are not explicitly
covered in this book.

™ Tom Gallagher, Lawrence Landauer, and Bryan Jeffries, Hunting Security Bugs (Redmond, WA:
Microsoft Press, 2006).

@ James A. Whittaker, How to Break Software (Boston, MA: Addison-Wesley, 2003); James A.
Whittaker and Herbert H. Thompson, How to Break Software Security (Boston, MA: Addison-Wesley,
2003); Mike Andrews and James A. Whittaker, How to Break Web Software (Boston, MA: Addison-
Wesley, 2006).

However, a byproduct of software testing and subsequent error reporting is extensive information
about defects and defect patterns that can be analyzed to identify root causes and how to eliminate
or mitigate similar defects in the future. This information can feed directly into the defect analysis
techniques.

Defect Analysis Techniques

The primary goal of defect analysis techniques is to learn from defects that have already been
discovered and to use that learning to further improve the quality of software and even the
productivity of those who build it. Defect analysis techniques help by applying the data gathered

during traditional product development to ongoing personal and process improvements and defect
prevention. The goal is to analyze defects, determine their root causes, and then develop ways to
improve the development process to eliminate them. If the defects cannot be eliminated, the goal
must be to create awareness of the defects, identify mitigation techniques, and then implement the
mitigations to reduce the impact of these defects on users. Examples of defect analysis techniques
are defect classification using defect taxonomies, root cause analysis (RCA), and stochastic
modeling. (See Chapter 9, "Stochastic Modeling," and Chapter 11, "Root Cause Analysis," for more
information).

Defect Prevention Techniques

The primary goal of defect prevention techniques is to anticipate and prevent defects proactively
before they can occur and cause failures or confuse users. This is the best approach because a
defect that does not occur is also a defect that need not be caught, fixed, and supported. The
savings resulting from the successful application of defect prevention techniques can be reapplied
elsewhere in the product cycle. Examples of defect prevention techniques are failure modes and
effects analysis (FMEA), fault tree analysis (FTA) (see Chapter 13, "FMEA, FTA, and Failure
Modeling," for more information), and use of the Prevention tab (see Chapter 14, "Prevention Tab,"
for more information).

Choosing Quality Improvement Techniques

Choosing quality improvement techniques requires careful consideration of project and
organizational factors. Although each situation is different, the goal is to achieve the maximum
benefit of defect prevention in an acceptable amount of time and using the available resources.
Figure 1-3 provides a general effort vs. benefit comparison of some commonly used defection
prevention techniques.

Figure 1-3. Effort vs. benefit comparison chart

[View full size image]

Defect Prevention Techniques
Effort-Benefit Comparison

Fy
Maximum == '] ’ T ¥
I : | : |
| I
| I |]
Occasional : |
results
Maderate - I I
£ |
S
z t
E . 3
B
g ~
Minimal 2 Typical
results
y
Mone T L L L L >
Lavwi High
Brainstorming Targeted Reveiws Proactive Periadic Continuous
“Three smart Design, Code Failure Modeling Root Causes Root Causes
people in Failure Analysis FMEA, FTA Analysis Analysiz
a room” Causal Analysis Quarterly Review, Daaily Rewview
Meeting Postmartem

Typical Time and Effort Invelved

In general, results improve as the investment in and rigor of the techniques increase. The downside
is that formal and rigorous techniques also require more time and effort investment. As a result,
with limited time and resources available, there is a tendency to use the less rigorous techniques,
including brainstorming sessions and review meetings. Although these can be effective, the results
are often highly dependent on the knowledge, skill, and experience of the participants.

Factors to Consider

No single technique can prevent all defects. A combination of techniques, requiring varying amounts
of knowledge, experience, resources, time, and effort, can be employed to promote the design and
development of high-quality software. Because time and resources must be determined and
allocated up front, and because they are almost always in short supply, successful defect prevention
programs require strong organizational commitment.

Be sure to consider the following factors when choosing among defect prevention techniques:

e People resources Which people will be available to perform the defect prevention technique?
Have they ever used this technique before? Do they have the right skills and knowledge, or
will they need to be trained?

e Tool resources Are the right technique-specific tools available to help guide people through
the defect prevention effort? If the right tools are not available, how long will it take to
obtain and implement them? Is tool-specific training available to the people who will be
using the tools in a defect prevention technique?

e Time resources How much time is available to the overall organization and key individuals
in particular to complete the software development project? Are there conflicting priorities

on how to allocate the time that is available? What stage of the product development life
cycle is the project in, and how will that affect available time?

e Organizational commitment Is management, in particular senior management, asking for
the defect prevention results? Is defect prevention part of the standard engineering process
in the organization? In product teams, how much support really exists for performing defect
prevention techniques, especially those that are more involved and require more
engineering rigor? When push comes to shove, will defect prevention efforts be always
postponed or cut from the schedule?

Selecting a Strategy

Defect prevention techniques can be delineated by the resource or time investment required, by the
short- or long-term effectiveness, and by the stages of the product cycle. Organizations should
determine where their greatest needs lie, what their quality goals are, and the level of commitment
to quality assurance versus ongoing quality improvement before deciding where and how to invest
in defect prevention activity. As a result of this assessment exercise, organizations can set realistic
goals for defect prevention investments and determine appropriate strategies to achieve them.
Depending on the level of investment, here are some alternative strategies.

Best Strategy

Prevent future defects. Focus on techniques that help anticipate potential defects, and use these
techniques to eliminate or mitigate possible failures proactively. In this strategy, the primary use of
testing is to confirm software quality.

Good Strategy

Focus on the techniques that can help detect and analyze defects, and use analysis information to
identify underlying causes. Implement improvements to eliminate those causes and mitigate the
impact of defects before users are affected. In this strategy, the primary use of testing is to ensure
software quality.

Bad Strategy

This strategy might represent the status quo based on how customers often perceive software
quality today: Allow defects to escape, let users find them, and then react to the complaints. Use
inadequate detection and prevention techniques or use adequate techniques half-heartedly. Allow
indifferent organizational commitment to hinder the achievement of expected quality benefits.

Organizational Considerations

Organizations must realistically assess their level of commitment to and expectations of the defect
prevention process. For example, many organizations want to achieve very low defect rates like
those of the NASA Space Shuttle program and the airline industry but resist the investment, effort,
and engineering rigor required to achieve such a high level of reliability and performance. Other
organizations want to eliminate defects by just putting "three smart people in a room" to discuss an
issue and quickly devise ways to resolve it. Unfortunately, although the brainstorming approach is
quick, requires minimal effort, and can be moderately effective, it typically isn't very thorough.

At the other end of the spectrum are more robust defect prevention processes such as formal root
cause analysis (RCA) and Six Sigma. These are more rigorous and typically based on gathering and
analyzing objective data. These formal approaches can garner results that are significantly better
but can also require much more time, effort, and organizational investment. Therefore,
organizations must determine their real level of commitment to defect prevention and set their

goals and expectations accordingly. In most cases, what organizations get out of defect prevention
is determined by the effort and investment they put into it.

Moving Quality Upstream

In a typical software development project, the test team becomes involved late in the process to
find defects and "test quality into the software." Unfortunately, as mentioned earlier in this chapter,
the later a defect is discovered, the more expensive it is to repair and the greater the cost and
impact on the overall project.

Consequently, if defects cannot be avoided altogether, a fundamental goal of a successful defect
prevention effort is to move quality verification and improvement to an earlier stage in the software
development cycle. Focusing on quality in the planning, design, and early development stages pays
big dividends later in the cycle. By moving quality assessment and improvement "upstream" in the
software development process, the test team can focus more on the end user experience and on
integration-level testing, rather than finding design or functional errors. See Chapter 17, "Moving
Quality Upstream," for more information.

Learning from Mistakes

It is important to implement a process that individuals and teams can use to learn from their
mistakes. A fundamental aspect of this learning is the classification of defects using a logical defect
taxonomy. With a structured taxonomy, an organization can analyze and learn about the types of
defects that have been discovered and their relative frequencies. Focusing root cause analysis
techniques on understanding why defects have occurred provides insight into what improvements
are needed to prevent or mitigate those defects in the future.

On the other hand, without a feedback process in place to ensure that the team can benefit from
the learning that takes place during defect detection, analysis, and repair, the likelihood of
repetitive errors is high. Consequently, a goal should be that if a certain type of defect is going to
occur, it should occur only once before safeguards are deployed to prevent it from recurring. See
Chapter 10, "Defect Taxonomies," for more information.

Investing for the Future

It is important to reiterate that organizational commitment dictates which of these defect prevention
techniques can be successful. An organization may desire to invest in rigorous defect prevention
techniques that promise more complete and effective results, but the desire must be supported with
a commitment to invest. If there is no willingness to allocate the necessary time and resources, or if
the company culture resists using the more rigorous techniques, the likelihood of successful defect
prevention efforts is reduced.

An important first step in securing organizational commitment and overcoming resistance is to
clearly demonstrate the potential return on investment. Each defect prevention technique requires
time and resources, and people will want to know how much benefit can be expected from the
effort. See Chapter 3, "The Economics of Defect Prevention," for more information.

Conclusion
Consider this:

e A defect prevented will never need to be fixed, saving time, resources, and money for your
organization.

e A defect prevented will improve the quality of your software and help increase customer
satisfaction.

e A defect prevented will not impact customers and decrease their satisfaction with your
software.

These simple statements represent why we wrote this book and the value we hope you receive from
reading it.

Although the benefits can be significant, the effort often required to achieve high levels of defect
prevention can be significant as well. Our hope is that the practical defect prevention techniques
described in this book will help you minimize the effort, maximize the benefit, and more rapidly
become a "prevention organization."

In this chapter, you were introduced to the topic of defect prevention including the concept of
software defects, why they occur, and what can be done to prevent them. The other chapters in this
section continue to lay a foundation for defect prevention by covering defect prevention
frameworks, economics, and the concept of software quality. The remaining sections in the book
focus on the practical detection, analysis, and prevention techniques to consider for your own
organization.

Chapter 2. Defect Prevention Frameworks
It is theory that decides what can be observed.
—A. Einstein

He who loves practice without theory is like the sailor who boards ship without a rudder and
compass and never knows where he may cast.

—Leonardo da Vinci

You may question why one of the opening chapters of a text targeted at practice would be about
process theory. The best answer comes from W. Edwards Deming, who is often referred to as the
father of process improvement. Deming stated that "experience alone, without theory, teaches . . .
nothing about what to do to improve quality and competitive position, nor how to do it." Deming
continued, "Experience will answer a question, and a question comes from theory."!!

W w. Edwards Deming, Out of the Crisis (Cambridge, MA: MIT Press, 1982).

A framework, like a theory, provides a means to ask questions. A framework differs in that the
incomplete portions are explicitly incomplete requiring each user to modify the underlying theory
contained in the framework. A process framework provides the skeleton of a theory that can be
filled in by the user of the framework. In 1830, Auguste Compte wrote "A Course in Positive
Philosophy" and proposed a framework for learning and the progression of science, formalizing it
into the Law of Three Stages.!?! The law proposes the following hierarchy of knowledge growth for a
scientific discipline:

@ Gertrud Lenzer, ed., Auguste Comte and Positivism: The Essential Writings (New York: Harper
Press, 1975).

1. The theological stage, where belief and religion dominate
2. The metaphysical stage, where philosophy dominates
3. The positive stage, where scientific reasoning dominates

Compte points out that "facts cannot be observed without the guidance of some theory" and "no
real observation of any phenomena is possible, except in so far as it is first directed, and finally
interpreted, by some theory."

Much of the history of software development has relied on the first stage of learning, using belief as
a means to determine the correct process. This is not surprising because D. N. Perkins found a
positive correlation between intelligence and the ability to justify one's point of view, and a negative
correlation between intelligence and the ability to consider others' points of view. Thus, once a
belief such as "increasing quality will increase cost" takes hold, it is reinforced with each subsequent
project, and the ability to consider other perspectives is reduced. Even highly intelligent software
developers can find it difficult to alter such a belief.

Bl D.N. Perkins, The Mind's Best Work (Boston: Harvard University Press, 1981)

Currently, there is a movement toward the second stage, the philosophical stage, with the so-called
Agile processes leading the way. The philosophy is codified in the principles of the Agile manifesto.™
The Agile manifesto attempts to organize the philosophy by which Agile processes such as Extreme
Programming and Scrum operate. It defines principles such as "Continuous attention to technical
excellence and good design enhance agility." This necessary second step in the evolution of
software process provides the means for dissolution of old beliefs, but it does not result in
measurable improvement to the engineering system. Thus, this is the rationale for Deming's
statement that theory must be an integral part of experience to eliminate dogmatic beliefs and

advance the engineering system. Without theory, there is superstition and philosophy, but no
science.

M See www.agilemanifesto.org/principles.htmi

Different frameworks tend to focus on different aspects of process improvement. This chapter
provides guidance on choosing and then enhancing a framework that your organization can use to
ask the right questions with respect to process improvement and defect prevention. Of course, the
right questions are those that lead to measurable improvement and the dissolution of superstition.
This chapter also describes some of the basic attributes of several popular frameworks. The purpose
is to add scientific rigor to the practical application of theory.

Examining a Sample Framework

Theory need not be complex. In fact, the best theories are often deceptively simple. To illustrate the
point, consider a simple theoretical framework for questions you may ask about a subject as
described in the Introduction and used throughout this book. The questions fall into the categories
shown in Figure 2-1. The theoretical framework provides a means to examine a subject area. For
example, you may expect that a practical guide provides extensive knowledge in the How category.
However, unless the topic is obvious or trivial, the model suggests that there must be a justification
for the subject, so it seems natural that the book must cover Why to some extent. As was
previously discussed, What is analogous to theory, and without it, there can be only belief, so even
a practical guide must provide a theoretical basis. Therefore, according to this model, a practical
guide to any subject must cover much more than simply a list of useful techniques.

Figure 2-1. Hierarchy of questions

How

What

Such a framework serves to assist in planning. Filling in the missing pieces of the framework
provides a structure for the project much as a theory provides the basis for scientific inquiry. Notice
also that it provides a means to question, that is, hypothesize, about the elements of the model.
This simple three-question model is useful as a means to assess the coverage of a subject area. You
may look at a variety of textbooks and gauge how well those books answer these questions. You
also can use the model to categorize textbooks. A theoretical subject may include more material on
What rather than How with little, if any, coverage of Why. On the other hand, a self-help book may
include extensive coverage of Why. The model provides a means to categorize and plan research
activities.

Notice that the example framework uses a subset of all possible questions. It is by no means all
encompassing and provides only partial guidance for the subject material. Kuhn, in his examination
of the structure of scientific theory, reports that a good paradigm actually is not complete.™! The
incomplete nature of the paradigm allows for scientific inquiry into the missing pieces.

W T. Kuhn, The Structure of Scientific Revolutions (Chicago: University of Chicago Press, 1962).

For example, after using the simple three-question paradigm, you can enhance it to include a time-
ordered progression of questions such as "Why, What, How" to provide more guidance while at the
same time restricting content. You can further enhance the model by including more questions,
such as "When" or "Who." However, enhancement occurs only after the base model is found to be
insufficient through experiment.

If a researcher examines a humber of textbooks and finds the need for more categorization, only
then would another category be added. The model provides a basic theory by which a researcher
can guide his or her thinking so that the decision to add more complexity is not based on only the
researcher’'s beliefs. Model enhancement uses good science. Propose a model, test it, and then
change it only after it is found to be lacking.

Proposing a Model

It is not always necessary to create a new framework because there often is no end to the number
of models proposed by academia. Picking a reasonable process-improvement model requires
understanding the content of the model. To determine What, a basic understanding of various
existing models is required. Some models target software development, while others are general
improvement paradigms. Often, the first model used for process improvement is a somewhat
arbitrary choice to assist in the planning effort. After an organization gains a detailed understanding
of the model, it is easier for the organization to enhance or change to another more suitable model.
The next sections describe a few of the more popular models that can be used for process
improvement.

Defect Prevention Model

The model used in this book considers the degrees to which a defect is detected versus prevented.
Certainly, detection techniques prevent the customer from finding a defect, so they qualify as a
rudimentary form of defect prevention. Figure 2-2 is the conceptual hierarchy and goals of each
level. The three levels of defect activity contain a number of subactivities that satisfy the main
category goals: defect detection, defect prediction, and defect prevention.

Figure 2-2. Defect prevention model

“
« Prevention
Prevention | * Escape Prevention TEChr'quLJES
S
. Ny
« Data Modeling
dicti = Data Reporting
Prediction | . pata Collection)
<
= Simple Inspection
Detection | * Test-centric Processes
W,

Defect detection has the goal of finding all defects before they are found by the next phase in the
process. You may ask why such a practice is a prevention practice. In the strictest of terms, it is
not, but most organizations begin with a practice of detection, so the model begins at this point,

too. At this level, the organization is mostly reactive to defect reports. Practices focus on testing the
product after defect creation. The two-step model presented in Chapter 9, "Stochastic Modeling"
(see Figure 9-16), indicates such a culture. In some organizations, simple inspection techniques
help to augment the test process. However, the focus is still reactive to defects, often resulting in
inspections that occur after the test process completes.

From a culture of detection, the organization moves to one of analysis. The end goal of analysis is to
predict areas that need attention either in the form of more removal processes or in the form of
process improvement. This level requires good measurement techniques, which means the data is
collected to answer specific questions associated with organizational goals (see the discussion of the
Goal-Question-Metric approach in Chapter 7, "Software Measurement and Metrics"), and the reports
are available to those who need them. Finally, this level makes use of prediction models, such as
those made possible by stochastic modeling (Chapter 9). The models predict product and process
quality.

The third level assumes a culture of prevention, where defects are not introduced in the first place
and where existing defects are not allowed to escape the creation process, that is, the defects are
not allowed to escape the engineer's office. Because human beings create code, it is not reasonable
that it be perfect when written. It is, however, reasonable that the person creating the defect should
also remove it. Practices at this level include prevention techniques such as formal design methods
and escape prevention. An example escape prevention technique is a formalized inspection process
that uses process controls such as review rate and predicts the number of escaped defects using a
capture—recapture methodology (see Chapter 20, "Leveraging Good Processes").

Capability Maturity Model

One of the oldest and most thoroughly researched of all software models is the Capability Maturity
Model (CMM), first described by Watts Humphrey (1989).! The original intent of the model was to
assess the capabilities of an organization against a common set of necessary development
processes. However, the model is also useful as a road map for improvement as a result of the
arrangement of the practices. As the model's name implies, it describes the degree of process
maturity an organization has with respect to required elements of the model. Here we describe the
elements of the model. Literally thousands of companies use the model to assess organizational
capabilities.

W w. S. Humphrey, Managing the Software Process (Reading, MA: Addison-Wesley, 1989). For
those readers not familiar with Humphrey, he joined Carnegie-Mellon's Software Engineering
Institute after 27 years leading IBM's development organization and is a National Medal of
Technology Laureate for his contributions to software development and production methodologies.

Model Structure

The CMM is an extremely rich, well-researched, and hence complex improvement model. However,
conceptually, it is very simple. It consists of five levels of process maturity each of which has a
purpose. Levels build on the capabilities mastered at previous levels. Each level has a number of
key practice areas (KPAs) that together fulfill the purpose of the level. Each KPA has a set of goals.
To have a disciplined process, an organization must show commitment to the process goals, have
the ability to carry out a set of activities, and measure and verify adherence to the processes. The
commitments, abilities, activities, measurements, and verifications form the What associated with
each KPA.

As stated earlier, the model contains a wealth of information, but the downside is a temptation to
implement the activities outlined in the KPAs directly as processes. Individual KPAs must not be
thought of as processes but only as a way of assessing a process. In an attempt to implement the
CMM as a How, organizations may become frustrated with the models, and the effort will likely fail.
Figure 2-3 shows the level hierarchy and target process improvement areas for each level.

Figure 2-3. Capabilities Maturity Model hierarchy

[View full size image]

Process Change Managemint
Tech C

Level 5 T
Quality Management

Levels of Process Maturity

Level 1 is politely referred to as Initial, or sometimes Ad Hoc. An ad hoc process is one designed for
a specific purpose and is typically intended for only one use. Once implemented, the exact rationale
for the process may be forgotten, causing other projects to adhere to an unsuitable practice. The
problem with level 1 organizations is obvious: they spend too much time inventing working
processes or using unsuitable ones. Because most of the world's software is developed by level 1
organizations, the level does not indicate the ability to be successful in the market. However, the
waste associated with using unfit processes means that most organizations could be much more
profitable.

At level 2, an organization is said to have a Repeatable process. This means that skills mastered on
one project are directly transferable to the next. At level 2, the skills are directed toward individual
teams and the management of those teams. Figure 2-3 shows the practices associated with level 2
organizations and those associated with good project management. Organizations at level 2
establish basic project management processes "to track cost, schedule, and functionality" and
provide the discipline "to repeat earlier success on projects with similar applications."” The intent at
this level is to understand the capabilities associated with the organization and the relationships in
project planning. Important project management issues such as requirements management and
configuration control are planned in advance, but a level 2 organization is still reactionary for most
management issues. Although project management skills can reduce some costs, most of the
benefit is realized through an understanding of each team's capabilities, hence the name

Repeatable. An organization can repeat past successes and avoid known failures at the
organizational level.

Level 3 is called the Defined level. Organizations at level 3 develop standardized processes that can
be used organization-wide. By using standardized processes, level 3 organizations can take
advantage of learning of each project team and spread it to other project teams. This does not
mean that all teams use the same process but rather that all teams use a version of the standard
process proven capable for the project of interest. A standard management process based on best
practice coordinates multiple projects. The organization assesses its processes against standard
models to determine capabilities. Notice that the need to first accomplish level 2 capabilities
becomes obvious when reviewing the capabilities of level 3 organizations. Without the basic project
management techniques of level 2, standardization of best practice is not possible.

At level 4, organizations Manage projects with statistical techniques using the data gathered by the
standard organizational processes. As before, level 3 practices are prerequisite to achieving level 4.
Unless organizations gather consistent data, the ability to use techniques such as statistical process
control (SPC)™ is not possible. Deming warns that statistical techniques are unusable on processes
that are not "in-control,” that is, processes with too many special cause variances.?! Although level
4 does not require that an organization use SPC, it strongly implies that SPC is useful. Additionally,
because using SPC requires processes to be in-control, the implication is that level 4 companies
have controlled special cause variance. Again, the need for standardization at level 3 becomes
obvious. Teams using ad hoc processes are less likely to have statistical control.

W SpC is a process of determining natural process variance and distinguishing variance inherent in
the process from variance with special causes.

@ w. Edwards Deming, Out of the Crisis (Cambridge, MA: MIT Press, 1982).

Finally, level 5 companies are known as Optimizing organizations. The practices at this level focus
on improving the standard processes in a scientifically valid manner. The practices require the use
of the information obtained at level 4 and a controlled introduction of new best practices. Once
again, the progression to level 5 requires mastering the abilities of level 4. As a side note, the
practices described in this book are useful for improving level 4 and level 5 capabilities.

Key Practices

We do not examine the key practice areas in detail. Instead, we describe the structure of a KPA so
that you can understand the elements of building a process model. Table 2-1 provides a list of
required practices and a brief description of the desired outcome of CMM KPAs.

Table 2-1. CMM Key Practices

Level Description Practice Area Desired Outcomes

1 Ad-hoc - Processes are None
created on an as-needed
basis and often outlive their

usefulness.

2 Repeatable - Team Requirements Requirements are documented and
processes are defined and Management changes are made known to everyone
past successes are affected.
repeatable

Project Planning Reasonable plans are made and plan
assumptions documented. Changes find
their way into all affected teams.

Level

3

Table 2-1. CMM Key Practices

Description

Defined - Organization-wide
best practices are defined
and data are collected

Managed - Processes are
controlled using the process
data

Optimizing - Process are
continuously improved

Practice Area

Project Tracking
and Oversight

Subcontract
Management

Quality
Assurance

Configuration
Management

Organization
Process Focus

Organization
Process Definition

Training

Integrated
Software
Management

Software Product
Engineering

Intergroup
Coordination

Peer Reviews

Quantitative
Process
Management

Quality
Management

Defects
Prevention

Technology
Change
Management

Process Change
Management

Desired Outcomes

The plans are used to control the work of
the teams. Any changes will be made
known and be agreed upon by those
affected.

Any work subcontracted to other
organizations is managed in a repeatable
manner.

The quality of the process used to build
the software is known. Quality assurance
activities verify that products are built
according to the planned standards.

Work products maintain version control.
Products are baselined and can be rebuilt
from the change control system.

An organizational focus exists for
improving process and sharing best
practice.

A set of best practices are created and
shared.

Engineers received necessary training to
build products.

The engineering activities and the
management actvities are integrated into
a single process.

Well-defined methods and tools are
integrated into the process.

All aspects of product engineering are
participate to build a product to satisfy the
customer needs.

Peer reviews are used effectively to
remove defects from the product.

The process is managed using statistical
methods.

The quality of the product is planned in
much the same manner as the schedule.

Defect prevention activities are planned.
Root causes of defects are found and
eliminated from the process.

New tools are proactively identified and
transitioned into the organization

The software process is continuously
improved to reduce cost, improve quality,
decrease cycle-time.

Figure 2-4 shows the CMM structure as defined by the model's authors.™! Each KPA has a set of
attributes known as common features, which define the structure of a KPA. As mentioned earlier, a
KPA has five features: commitments, abilities, activities, measurements, and verifications. The
activities clearly define the What of the process framework.

M M. C. Paulk, C. V. Weber, B., Curtis, and M. B. Chrissis, The Capability Maturity Model: Guidelines
for Improving the Software Process (Reading, MA: Addison-Wesley, 1994).

Figure 2-4. Key practices

Key Practice

Commitments Abilities Activities Measurements Verification

Measurements may also fall into a What categorization, but an examination of the actual text leads
to some doubt. The other three features clearly do not provide guidance for a software process.
Their purpose is instead to provide organizational guidance for implementation of the process and
assimilation into the organizational culture. If you are simply looking at process improvement, the
implementation features do not define what must be done with the process.

The activities define elements of a process but not the process. The activities cannot be turned into
a step-by-step procedure even with the help of the subactivities provided. For example, activity 7
under the Project Planning KPA has 10 steps that appear to indicate a process and may even appear
to organizations at level 1 to be a reasonable process. However, you must not attempt to read it as
a process because that would result in a very poor implementation.™

M For a good implementation of the Project Planning KPA, see any of the books by Watts Humphrey
referenced throughout this book.

Capability Maturity Model Integration

The CMM was described first because it is a simple model that can be applied to the process of
software development. One rationale for the more complicated Capability Maturity Model Integration
(CMMI) model is to support organizations that are more complicated such as those with separate
software and system engineering functions. The CMMI adds more information to the model as well
as changes the maturity structure. Several names of levels change in an attempt to clarify

terminology. For example, level 2 is renamed Managed, and level 4 is called Quantitatively
Managed.

The CMMI renames the concept of levels as stages. In addition, there is a model representation
known as Continuous that acknowledges that an organization may want to work on more than one
level simultaneously. The price paid for the added flexibility is a need to understand the dependency
between KPAs. Novice users may not fully grasp dependencies between various stages of process
improvement. For example, you must have controlled processes before attempting to use
techniques such as Statistical Process Control. Implementing in the wrong order can do more harm
than good. The CMM controls the dependencies implicitly by assuming implementation of each level
until the KPA goals are fulfilled. This makes for a simpler improvement road map.

The CMMI changes some of the KPAs to provide a more detailed business model. For example, the
CMMI adds a KPA for decision analysis and one for causal analysis. Although such KPAs may be
outside the scope of software development, they are highly desired elements of a software
development organization.

Malcolm Baldrige Framework

The Malcolm Baldrige (MB) award provides another process model similar in some ways to the CMM
but very different in others. The Malcolm Baldrige National Quality Improvement Act of 1987
provides for recognition of outstanding quality in goods and services by the president of the United
States. The Malcolm Baldrige National Quality Award (MBNQA)™ requires performance excellence
along the following criteria categories:

W see www.quality.nist.gov/PDF_files/2007_Business_Nonprofit_Criteria.pdf.

Leadership

Strategic planning

Customer and market focus

Measurement, analysis, and knowledge management
Workforce focus

Process management

Results

Figure 2-5 shows the model associated with the MBNQA. It contains seven categories and the
associations between categories. Measurement forms a basis that all of the categories build upon,
and the Organizational Profile is the overarching description under which the organization is
assessed. Leadership, strategy, and customer focus affect the workforce and organizational
practices that lead to results.

Figure 2-5. The Malcolm Baldrige framework

[View full size image]

Organizational Profile:
Environment, Relationship, and Challenges

2 5
Strategic Workforce
/ Planning Focus \\.‘
1 ¢ N 7
Leadership Results
. 3 6 _/
Custemner and Process
Market Focus Managernent

Measurement, Analysis, and Knowledge Management

The seven criteria categories are broken down into Items and Areas to Address, much as the CMM
levels are broken down into KPAs, and, coincidentally, there are 18 total Items, which is the number
of KPAs that exist in the CMM. The assessment of an organization uses points for each of the Items,
with a possible 1,000 total points available. The category of Results is nearly half the total (450 out
of 1,000 available points), indicating the emphasis placed on seeing actual organizational benefits.

The goal of Leadership is to assess the means by which senior leaders guide and sustain the
organization, the general governance process, but also the social responsibility of the organization.
The organizational governance includes management accountability, fiscal accountability, operations
transparency, independence of auditors, and protection of stakeholder interests. The social
responsibility of the organization assesses the organization's ethical and legal behaviors as well as
the relationship between the organization and key communities with which it interacts.

Strategic Planning assesses how the organization creates strategic objectives and their action plans.
Included in the planning is the means by which plans are deployed and changed if necessary. The
means by which information is gathered is also examined. The assessment explicitly examines the
means for predicting performance from the data. Strategic planning may include both formal and
informal means.

The category of Customer and Market Focus examines how the organization determines customer
needs. Associated with this category is the customer relationship practice of the organization. The
assessment includes market segment analysis and use of tools such as voice-of-the-customer.
Customer relationships include the building of relationships and the assessment of customer
satisfaction.

Measurement, Analysis, and Knowledge Management considers the means used by the organization
to select data for gathering, the means used to gather the data, and the means used to analyze the
data. Additionally, the means used to improve the measurements and the information management
techniques are analyzed. The employee performance appraisal system falls into this category, as
does the information technology used by the organization.

Workforce Focus examines the means used to manage the workforce, engage them in the business,
and improve the workforce. Engaging the workforce refers to the means used to align people with
the business mission and strategy. Workforce Focus includes the means used to develop new
leaders.

Process Management refers to the means used to create core competencies. The assessment
includes the means for designing, managing, and improving engineering systems such that the
system delivers the required customer value and creates a sustained technology advantage for the
organization. Also assessed are risk assessment and mitigation strategies.

The Baldrige model has a number of subpractices that the practices described in this book address.
For example, in the area of Strategic Planning, business strategy requires the deployment of
business goals. The Balanced Scorecard presented in Chapter 7 fulfills many of the needs. The CMM
can fulfill the need for Process Management. Stochastic modeling provides a means for advanced
analysis of measurements.

The final category, and by far most important in terms of the assessment points, is Results. Results
are examined for products, services, customer activities, financial measures, workforce, processes,
and leadership. The organization must indicate its position relative to the market and others in its
market segment.

As described in Chapter 12, "Adopting Processes," many frameworks are not mutually exclusive. In
a sense, the Malcolm Baldrige framework provides a meta-model for many other frameworks. Each
of the categories could be considered its own framework. The difficulty arises from the relative
complexity of the model. For example, the Balanced Scorecard fulfills some of the elements of
Strategic Planning and some of the elements of Measurement, Analysis, and Knowledge
Management. The CMM provides some of the elements of Process Management, some of Workforce
Management, and some of Measurement. It is easiest to use this model as a check step to an
overall goal rather than as a means of deploying processes. In addition, this model takes a systems
approach relating causes, such as leadership, to the results. It acknowledges the relationships
between organizational components, which many other models do not.

ISO Models

The International Organization for Standardization (ISO) publishes a wide variety of standards such
as those for the threads on screws, telephony protocols, and quality management practices. 1SO
9000 is broadly applied to any manufacturing process focusing on quality management practices.
1SO 9001 is more often applied to software. It is more general than the CMM and provides general
principles of quality management, not specifics. ISO 12207 may be a more applicable standard, but
it is less well known.

I1SO 15504, also known as SPICE, is a maturity model much like the CMM. SPICE stands for
Software Process Improvement and Capability Determination. Processes are categorized according
to the information in Table 2-2.

Table 2-2. SPICE Process Categories

Process Category Description

Acquisition Processes performed to acquire a product or service

Supply Processes performed to propose and deliver a product or service
Engineering Processes that elicit and manage the customer's requirements; specify,

implement, and maintain the software product

Operation Processes performed to provide for the correct operation and use of the
software product or service

Supporting Processes that may be used by other processes at various points in the
software life cycle

Management Processes that contain practices that may be used to manage a project or

Table 2-2. SPICE Process Categories

Process Category Description
process in the software life cycle

Process improvement Processes performed to improve the processes performed in the
organizational unit

Resource and Processes performed to provide adequate human resources and IT
infrastructure infrastructure as required by any other process
Reuse Processes performed to provide reuse opportunities in the organization

Table 2-3. SPICE Process Category Levels

Optimizing process
Predictable process
Established process
Managed process

Performed process

S B N W b~ O

Incomplete process

SPICE provides six levels, as shown in Table 2-3, that begin with level O, which is the equivalent of
the CMM Initial level. The attainment of a level uses an assessment method similar to the
continuous method of the CMMI. An organization receives a percentage score for its attainment of
the maturity at each level. The assessment method attempts to quantify process capability along
the following dimensions:

Process performance
Performance management
Process definition

Process deployment
Process measurement
Process control

Process innovation
Process optimization

A detailed examination of the model shows its similarity to the CMM. The most noticeable difference
is an attempt to include many of the elements of the MBNQA and the ability to assess each process
for a level.

Other Models

Many other models exist and are applicable to software development organization. SPICE and CMM
are the most directly applicable because they were designed specifically for software. However, any
a good framework meant to guide quality improvement practices is applicable to the software
organization, with some modification. For example, Six Sigma methods use an improvement model
called DMAIC, which stands for define, measure, analyze, improve, and control. The intent of the
method is to provide the sequence of steps required to control any process. DMAIC is not so much a

framework for improvement as a methodology for improvement and should not be confused with
the CMM or SPICE frameworks.

Comparing the Models

The CMM is specifically targeted at software development organizations, as is ISO 15504. The CMMI
adds some business processes to the CMM, and SPICE attempts to identify process dimensions not
specific to software development. The Malcolm Baldrige criteria categories are more holistic and look
to solve business problems across all functional disciplines. All models provide a means to assess
competencies and compare the assessments across organizations.

Choosing and Using a Model

The first step in choosing a model is to understand the improvement goals for the organization. One
obvious goal is business need. For example, if an organization must do business with the
Department of Defense, it must use the CMMI and do periodic "assessments," which is a
euphemism for process audits. The organization must get a certain rating from the assessment. An
objective of receiving a positive rating is different from an objective of lasting process improvement.

After an organization understands its goals, choosing a model is a matter of understanding the
questions a particular model is capable of answering. For example, the CMM provides a sequence of
stages of process maturity. Each stage answers a set of questions. Level 2 answers the following
questions:

® Do we have an established set of basic project management techniques?
® Do we know the cost of a project?

e Can we track schedule?

® Can we track functionality?

® Can we repeat past successes?

Using a model is much more difficult than choosing one. Using a model requires an organization to
assess its capabilities, looking for both strengths and weaknesses in an honest, unbiased manner.
This can be difficult for organizations new to process improvement because they may tend to
overstate their strengths and understate their weaknesses. One primary reason for this is the lack
of accurate data. Organizations that have practiced process improvement for a reasonable period
may also have difficulty accurately assessing their capabilities against a model and may understate
their strengths and overstate their weaknesses. The primary reason for this is the abundance of
data. To remove the quandary caused by this double-edged sword of data, you must eliminate the
emotional ties to the data and see it as just data. If a weakness is a side effect of a corresponding
strength, you must consider it as such.

Organizational Considerations

As mentioned, models such as the CMM specify only what must be done and do not consider how or
why. Additionally, the CMM provides only cursory organizational guidance. However, the process
model is not independent of the organizational structure in which the process is used. H. Mintzberg
provides a means of modeling the relationship between the environment in which a business
operates and appropriate organizational structures.™™ Although the process framework does not
depend on the environment, the implementation of the framework does. For this reason, it is
important to consider the model provided by Mintzberg when implementing various processes.

W' H. Mintzberg, "Structure in 5's: A Synthesis of the Research on Organizational Design,"
Management Science 26, no. 3 (1980): 322—-341.

Mintzberg writes that two environmental factors drive various organizational structures. The first
factor is the stability of the environment, and the second is the complexity. Figure 2-6 shows a two-
dimensional grid based on these attributes. The y-axis is the complexity of the environment, and
the x-axis represents the stability of the environment. Mintzberg calls the stability attribute
"dynamism" to show that the scale ranges from low to high. From this simple grid, several types of
organizations can be described. For purposes of discussion, only the extreme points of each axis are
considered.

Figure 2-6. Mintzberg's model of environmental attributes

High _
Professional Adhocrac
+ Bureaucracy ¥
£
-
S
o
£
o
Ly
Machine Simple
Bureaucracy Structure
Low * High

Dynamism

When an environment is both stable and simple, the organization is known as a Machine
Bureaucracy. The primary controlling mechanism is through standardization of work processes,
which is enforced by a central authority. At first glance, the CMM seems to rely strictly on such
coordination mechanisms leading to the misconception that it is applicable only in large, traditional
bureaucracies. However, the framework is useful in all types of structures, as will be shown later in
Chapter 12.

When the environment is complex but still relatively stable, the organization shifts to a state known
as a Professional Bureaucracy. Professional standards replace centrally enforced rules and
regulations. The standardization of skills causes standardized behaviors across the entire industry.
The medical profession is an example of an industry with standardized skills. The key element of
such an organization is the amount of training required to provide the standardization. The same
processes used in the Machine Bureaucracy are useful in a Professional Bureaucracy, but
responsibility for the processes rests with the individual, not with a central authority.

When the environment is simple but also dynamic, the organization forms a Simple Structure. A
single individual provides the controlling mechanism and is involved in most, if not all, aspects of

running the organization. Typically, processes are not formalized, and coordination is through direct
supervision. This environment is the most challenging for use of a framework such as the CMM.

Finally, when the environment is both complex and dynamic, an organization forms what Mintzberg
terms an "Adhocracy." The control mechanism is mutual adjustment, where individuals control their
own processes much like in the Professional Bureaucracy. The difference rests with the ability to
deploy many different types of specialties. The framework in such an organization must encompass
the richness of different disciplines. An example of such a framework is the CMMI, which attempts
to merge the systems and the software work. Adhocracies likely have many frameworks, one for
each functional discipline.

When you decide to implement a framework, you must keep in mind the environment and the
primary controlling mechanisms. It would be unreasonable to expect an organization with a simple
structure to put into place practices more suitable for a professional bureaucracy. Although not
strictly part of any of the models, the organizational structure may influence the choice of models
and certainly the implementation. An organization must also take care to avoid the tendency of the
tail wagging the dog. For example, putting into place a Machine Bureaucracy will not cause the
environment to suddenly become less complex and less dynamic.

Conclusion

An organization must have a framework for improvement to build a plan for improving. Established
frameworks are available to guide the process but require more effort to understand. Instead, an
organization can begin with a simple model and add to it to provide a lower barrier to entry; this,
however, limits the potential improvement opportunity. The software industry has a history of
reinventing solutions to problems solved by other companies and other industries. Standard models
provide for sharing practices and the ability to benchmark against other companies' efforts.

Theoretical models, such as the CMM, CMMI, and SPICE, provide the basis for asking such questions
as the following:

® "Where is our organization as benchmarked against the industry?"
e "What capabilities are we lacking?"

e "Have others already solved a particular problem?"

Without a framework, such questions are meaningless. The frameworks provided in this chapter
provide a starting point from which to build. Choosing a framework requires the organization to
understand its business needs and desired outcomes. You can use the tools provided throughout the
rest of this book to solve different problems using different frameworks. Be sure to understand the
context of the process before attempting to use any of the tools. Context requires a model, even if
that model is incomplete.

Einstein said, "Creating a new theory is not like destroying an old barn and erecting a skyscraper in
its place. It is rather like climbing a mountain, gaining new and wider views, discovering unexpected
connections between our starting points and its rich environment. But the point from which we
started out still exists and can be seen, although it appears smaller and forms a tiny part of our
broad view gained by the mastery of the obstacles on our adventurous way up." The point of a
software framework is to create a view that incorporates the map of the process environment. The
framework begins as the starting point on the improvement journey, incorporates lessons learned
along the way, and provides a road map so that others can follow.

Chapter 3. The Economics of Defect Prevention

When a management team with a reputation for brilliance tackles a business with a reputation for
bad economics, it is the reputation of the business that remains intact.

—Warren Buffet

Religion and art spring from the same root and are close kin. Economics and art are strangers.
—Nathaniel Hawthorne

In economics, the majority is always wrong.

—John Kenneth Galbraith

Chapter 2, "Defect Prevention Frameworks," presented the idea that process improvement activities
have three perspectives: What? How? and Why? This chapter discusses why organizations must
prevent defects and presents a view on how to analyze the changes from a profitability perspective.
This book provides you with a set of tools your software development team can use to improve the
development process and prevent defects. When you make improvements, it is important to remain
focused on the bottom line: defect prevention increases the organization's profitability. This chapter
describes the economic benefits of defect prevention, which may be the single best investment that
an organization can undertake. Every prevention activity reaps continual benefit. Once a defect is
no longer possible in a process, all of the effort normally required to correct it is no longer
necessary. Prevention effort pays off every time a defect does not occur. As long as an organization
continues to develop software, the benefits will continue indefinitely.

Preventing Defects Is Good for Business

It is to an organization's advantage to measure and improve the software development process by
using economic benefit as the means to gauge the efficacy of the engineering system.
Comprehending the connection between the engineering system and the balance sheet is vital. Few
organizations know the actual cost to develop and maintain software; organizations may go years
without understanding the benefits and costs of various activities in the development process. For
example, although a company may understand the concepts of budget and headcount, often it does
not know the cost of repairing defects at various phases in the development process or the actual
lifetime cost of a software feature. Some organizations measure the cost to produce a thousand
lines of code, but such measurements are rarely able to capture the incremental value to the user.
In fact, a feature's value to the end user is often unknown, unmeasured, and ill considered at
design time. It is not surprising that the connection between engineering process and customer
value is tenuous at best.

When an organization decides to make process changes or deploy a new tool to improve the
software engineering process, management often uses experience, a.k.a. gut feeling, as the basis
for making the decision. Sometimes the herd effect—a mentality that causes organizations to pick
the latest well-marketed technology—determines which technology the company will implement,
even though there is little or no scientifically valid research to determine whether the technology
actually improves software engineering systems. (Sometimes creators of innovations can make a
profit simply by consulting with companies on how to implement the new method.) In such cases, it
is no wonder that new tools and new processes do little to improve a company's systems. In fact, it
is to the consultant's advantage to provide only minimal value to the client, thus ensuring that
clients require future process improvements and securing future consultancy business. Although
such a view may seem overly cynical, it does explain how process change after process change
results in little noticeable improvement in the quality of delivered software.

Because of a lack of process data, the value of improvement activities must be estimated. However,
enough information exists to make a good estimate of the cost of various activities in the software
development process. For example, in Winning with Software, the author, Humphrey concludes that

testing consumes at least half of the total cost of the development process.™* Further, according to
a National Institute of Standards and Technology (NIST) report,® 80 percent of development costs
are spent identifying and fixing defects, and the cost of inadequate testing, as defined by NIST, is
estimated to be as high as $60 billion per year. The study concludes that half of the cost of defects
found by the user is borne by users and half by the developing organizations. The NIST report
estimates the direct costs incurred to test products using existing software development processes,
which rely on defect detection, not defect prevention. Assuming the report is accurate, we can
conclude that companies that implement defect prevention techniques can realize up to $30 billion
in savings by preventing defects instead of spending resources detecting and fixing them, not
including any savings associated with an improved development process.

W Humphrey, W. S. Winning with Software. An Executive Strategy. (Boston: Addison-Wesley,
2003).

@ RTI. "The Economic Impact of Inadequate Infrastructure for Software Testing."” National Institute
of Standards and Technology, Program Office Strategic Planning and Economic Analysis Group.
(2002)

So what are the true costs to organizations that do not practice defect prevention techniques? To
answer this question, a brief background in cost—benefit analysis and economic costs is required.
The next section describes one way of looking at the costs associated with the development process
and provides a method of estimating the effect of defect prevention on the value of delivered
software. The aim is to provide an economic argument for the value of defect prevention.

Economic Theory and the Value of Defect Prevention

Software companies are fortunate in that software is a very profitable product. Essentially, software
lasts forever, never wearing out. A copy of DOS that ran a PC twenty-five years ago works as well
today as it did when first shipped. Copies of existing software can be made for distribution at very
low costs. So the nature of software and its development and distribution leads to high margins and
occasionally the view that traditional cost accounting techniques do not apply. Although a strict
adherence to traditional accounting measures do not always apply to the software industry, they
can be modified so that techniques for conducting cost—benefit analyses and marginal cost analyses
can work well to determine expected return on investment.

For purposes of this discussion, we must define a few terms and equations to provide a brief
explanation of economic measures as they apply to the software industry. This section is meant to
provide a quick introduction to the terminology of economic profitability as used in this chapter,
which differs from its use in accounting. In addition, we do not consider subtle nuances of economic
theory. This section illustrates how you can do a cost—benefit analysis, and you will likely need to
modify it to apply to your specific organization.™

[The estimates use data from a variety of sources to illustrate how to perform such an analysis
and do not necessarily reflect data from the authors' organization.

Profitability

It seems obvious that the primary purpose of a for-profit company is to make money. Although
organizations generally also desire to contribute to the community, provide for the well-being of
their employees, and improve their respective industries, these secondary attributes merely assist
in the primary purpose. Milton Friedman!® (1970) even went so far as to propose that profitability is
really the only purpose of a publicly traded company and that long-term benefit to stockholders
must drive all management decisions. Although many disagree with Friedman that profitability is a
company's only concern, profitability certainly is a powerful driving force. Therefore, the decision to
prevent defects must be supportable from the perspective of the balance sheet and corporate
profits.

?l Friedman, M. "The Social Responsibility of Business Is to Increase Its Profits.” The New York

Times Magazine (1970, September 13).

One model for maximizing profitability uses what is known as the marginal cost-marginal revenue
method. The concept is simple and incorporates several well-known microeconomics concepts.
Marginal revenue (MR) is the revenue realized from making one more sale. Marginal costs (MC) are
those costs incurred to deliver to the marketplace one more unit of product. An organization's costs
are all costs associated with production, and these fall into two categories. Variable costs are those
associated with producing one more unit. For example, in manufacturing, the cost of raw material
that makes up the product is an example of a variable cost. Fixed costs are those that are incurred
regardless of the number of units produced. For example, in the software industry, engineers'
salaries must be paid regardless of the number of copies of software sold. Likewise, rent paid for
facilities and utility bills are also costs independent of units sold. Because fixed costs are already
spent, they are not part of the marginal analysis. Only the variable costs enter into the decision to
produce one more unit of product.

Figure 3-1 shows profit maximization using the marginal cost—marginal revenue approach in a
market with perfect competition. Notice that the cost curve drops as economies of scale allow for
production efficiencies. At some point, however, the costs begin to increase as inefficiencies
associated with large-scale production overwhelm the benefits. At the point where the marginal
revenue (MR) line crosses the marginal cost (MC) curve, the price paid for the unit sold is exactly
equal to its cost. Thus, marginal profit is zero. At this point, selling one more unit results in a net
loss to the organization since the revenue received will be less than the cost to produce the item.
Thus, the company maximizes its profit when it sells exactly quantity Q, occurring at the point MC =
MR. Profit maximization using this theory is simple and intuitive. From the simple graph, the price
for the software and the quantity sold are set. The total profit realized must exceed not only the
variable costs but also the fixed costs in order for the product line to be profitable. The difficulty lies
in determining marginal costs and revenues and relating the net profit to determine of they cover
fixed costs.

Figure 3-1. Maximum profit occurs when MR = MC

Price

MC

MR

Quantity

A key element of cost analysis is known as the opportunity cost of capital, or simply, opportunity
cost. By investing in a particular product line, a company must forgo the opportunity to invest in
some other area; the forgone profit of another alternative is the opportunity cost. Thus, when
calculating potential profit, the profitability of a chosen product line must exceed the opportunity
costs to determine the true economic profit; that is, the profits realized from an investment must
exceed the profits expected from the next best alternative.

To satisfy stockholders, public companies must invest in a portfolio of products that returns a
certain profit percentage. This risk—reward potential of an investment drives investment decisions at
the senior management level and is reflected in the stock price of a company. That is, if the
portfolio of products does not provide sufficient reward, investors sell their shares of stock, lowering
the stock price. Therefore, the opportunity cost of capital and the profitability expectations of a
company are directly contained in the price of the stock. Investments in lower-profit opportunities
lower the stock price, whereas realizing profit in excess of the expected return, as measured by the
opportunity cost, raises the stock price. This is the basis for justifying a defect prevention activity. If
the cost of defect prevention can produce a return in excess of the expected opportunity cost, it
benefits the stock price and is a good investment for the company to make.

Applying Marginal Cost Analysis to Software Development

Both software development organizations and traditional manufacturing organizations produce and
distribute products. However, software companies differ from traditional manufacturing
organizations in several important ways that require modification of the methods used to analyze
cost and profit. For example, when a manufacturing organization builds, say, an appliance, the
marginal costs include the costs of raw materials and labor to produce the appliance. To sell one
more unit, more production work is required, which of course increases marginal costs. However,
this is not the case with software. After a software application is created, to sell one more unit, a
software company need only burn another CD or DVD copy. The marginal costs are the cost of the
media plus the cost of salaries for those involved in the copying process, as well as any delivery
costs—the total cost to produce one more unit is likely less than one U.S. dollar. And if the user
downloads the software from the Internet, the only marginal cost for the software company is the
cost of maintaining the communications network. This seems to suggest that the traditional
economics of marginal costs cannot be applied to software companies.

However, from a slightly different perspective, traditional analysis can be applied to software
companies. Marginal cost analysis focuses on production of the product. In the software industry,
engineers produce the product when they create code. Therefore, it seems reasonable that marginal
cost analysis for software should focus on the production of the final software product and not on
the costs of literally selling one more unit, that is, shipping the media to one more user. In other
words, it is more effective to analyze the creation of the code and consider the marginal cost as the
cost of including one more feature in the software. From this perspective, marginal costs are those
costs associated with adding one more unit of functionality to a software product.

The marginal cost—marginal revenue method described earlier can now be applied to software
organizations. The cost associated with adding each feature to the software product is measured by
using the scorecard methods described in Chapter 7, and then the benefit of each feature are
measured using the scenario voting methods described in Chapter 15. This method is best suited to
determining marginal benefits for every feature and is a viable means for organizations to maximize
benefits to end users. However, evaluating the contribution to profitability for implementing a defect
prevention technique is slightly more difficult because it applies to all features equally. This makes
the analysis easier to conceptualize but harder to measure.

Estimating Costs

From an accounting standpoint, to calculate marginal costs, you must determine the cost of every
feature, determine applicability to the feature of a particular defect prevention activity, and then
calculate the associated benefits. Recall that the goal here is not to provide the business analysts
with information; it is to determine the efficacy of a defect prevention method. To do so, you can
use a proxy for the feature and perform an analysis based on the proxy. Because features are
implemented with code, lines of code are a useful proxy for functionality. Although software
products contain other functionality, for example, help documentation, the focus of the typical
defect prevention activity is on the feature code. We can reasonably assume that an analysis
focused only on feature code can provide an understanding of the benefits of defect prevention.

Some people argue that using lines of code as a proxy for functionality is not useful because not
every developer codes alike, not all features are alike, different programming languages have

different issues, and so on. However, all of these objections tend to focus on the difficulty of
comparing features, languages, or possibly even engineers. In the marginal cost analysis case, two
processes are compared with one another, not two features. Presumably, different processes would
result in very similar implementations of a feature, with the only difference being the process used
to create the feature. Lines of code would be a useful means to gauge the amount of work
accomplished. In such a case, the cost of the activities associated with the process provides the
means to judge the benefit of the defect prevention. That is, the time required to produce 1000
lines of code under process A is compared with the time required for process B. Using the
techniques described in Chapter 7 of this book, you can gather data to make a reasonably accurate
judgment for cost associated with the activities of different processes.

For discussion purposes, the method for comparing two processes is based on a simple model of the
development process. The model has five major phases: Requirements (REQ), High-Level Design
(HLD), Implementation (IMPL), Test (TEST), and Release (REL).™ Each development phase includes
more detailed activities. Table 3-1 provides phase breakdowns for two candidate processes. The
first process primarily uses test to remove the defects and will be called a test-centric process
(TCP). The second relies on defect prevention activities and inspections so will be called a defect
prevention focused process (DP). The phases represent the work required of a software
development project whether or not a process actually produces these products; that is, all systems
have requirements, but not all processes produce them. In other words, many test-centric
processes spend little time in the requirements phase and often do not produce a thorough work
product. The phase exists, in that the product will have been implemented against some loosely
defined requirements. The result is that very little time is spent in the requirements phase, and
anyone trying to measure the phase may not even notice that it existed.

[A worksheet of the detailed cost—benefit analysis is available on the Defect Prevention Web site at
www.defectprevention.org.

Table 3-1. Process Comparisons

Test-centric Process Defect Prevention-focused Process
Phase Detailed Process Step Detailed Process Step

Plan Plan
Requirements Write requirements Write requirements

Write system test plans Write system test plans

Inspection Inspection
High-level design High-level design High-level design

Write integration test plans Write integration test plans

Inspection Inspection
Implementation Detailed designs Detailed designs
Reviews

Test case development

Team design inspections

Code Code
Reviews
Compile Compile

Code inspections Code inspections

Table 3-1. Process Comparisons

Test-centric Process Defect Prevention-focused Process
Unit tests Unit tests
Integration tests Integration tests

Test System tests System tests

The major activities require effort to produce the final software, even if no intermediate work
product is produced. For example, a product manager may spend time considering various customer
requirements and then verbally communicate the customer needs to the development team. The
development team uses the verbal communication to produce the code. Additionally, the work is not
necessarily carried out in the order listed, and some work may be done in parallel. The intent of this
analysis is to consider the investment made in each work product and the associated benefit in the
form of quality, that is, defects in the software.

The analysis requires every phase to have a cost probability distribution function (pdf) and an
associated effect on quality pdf. The model of the development activities requires each step in the
process to estimate costs in the form of effort and benefits in the form of quality. Chapter 9
provides effort estimates based on a process similar to that shown in Table 3-1. The numbers
provided in this chapter are averages across the probability distribution functions.

Every activity includes the possibility of introducing an error into the final product. Some activities
have a tendency to create errors, whereas others have a tendency to find existing errors. For
example, writing code creates coding defects, whereas inspecting code tends to remove existing
defects without creating many new ones. As discussed in Chapter 9, it is possible to make changes
in the process to minimize the defects that escape a product phase. A change invariably requires
some effort to implement and carries with it the potential of preventing defects from slipping to the
customer release phase. Therefore, the effort required to prevent the defect is the cost of the
investment, and the time saved in later phases is the benefit.

The next sections examine costs and benefits of two processes, a test-centric process and a defect
prevention focused process. The technique is useful for any process change associated with defect
prevention activities.

Process Cost Estimates

The primary driver of cost for software development is the salary of the engineer. The cost of the
typical computer is very much less than the cost of engineers' salaries. Additionally, marginal cost
analysis does not usually include the cost of capital equipment, only the cost of materials and labor.
As was already stated, the cost of materials for the product is insignificant compared with the cost
of labor. Determining the cost of defect prevention first requires an estimate of engineers' time
spent in every development activity and their hourly rate. The problem is that most software
organizations do not have this information available. In the examples used here, the data is
gathered from various teams from a variety of organizations.

Table 3-2 contains a summary of the effort associated with each of the detailed activities for
producing a thousand lines of code (KLOC) for one development organization using a test-centric
process. This organization is a fairly typical example of a company that relies primarily on testing to
find and fix problems. According to Humphrey, such an organization will deliver to the test phases
on the order of 20 defects per thousand lines of code.™ Davis and Mullaney™ found that software
released from a typical organization has 6 to 7 defects per KLOC when a reactive test-centric
process is used.®! In a very real sense, the engineer produces defects along with the code. Think of
these defects as a form of warranty liability: there is a chance that they must be fixed at some
future date, and a probability distribution determines the likely cost to do so." As with warranty

liability, the product may or may not be defective, which may or may not generate additional cost to
fix the defective product.

W Humphrey, W. S.. Winning with Software. An Executive Strategy. (Boston: Addison-Wesley,
2003).

@ pavis, N., & Mullaney, J. The Team Software Process in practice: A summary of recent results.

(Pittsburgh, PA.: Software Engineering Institute, Carnegie-Mellon University, 2003).
B Davis and Mullaney related it to CMM level 1 organizations which tend to be test-centric.

“ Every engineer and every piece of code will have different liability curves. See chapter 9 for more
on probability distribution functions.

Table 3-2. Process Effort Comparisons

Phase %b Total Effort Detailed Process Step % Total Effort Total Hours

Test-centric Process

1% Plan 1% 1.3

Requirements 4.20% Write requirements 2.2% 2.9

Write system test plans 0.9% 1.1

Inspection 1.1% 1.4

High-level design 4.2% High-level design 2.2% 2.9

Write integration test plans 0.9% 1.1

Inspection 1.1% 1.4

Implementation 24.6% Detailed designs 2.2% 2.9
Reviews

Test case development

Team design inspections

Code 11.7% 15

Reviews

Compile 2.2% 2.9

Code inspections 0.8% 1

Unit tests 7.8% 10

Integration tests 17.2% 22.1
Test 65.9% System tests 48.8% 62.8
Total 128.7
Defect Prevention Focused Process

4.8% Plan 4.8% 4.4

Requirements 19.9% Write requirements 9.9% 9.3

Write system test plans 5.0% 4.6

Table 3-2. Process Effort Comparisons

Phase %b Total Effort Detailed Process Step % Total Effort Total Hours
Inspection 5.0% 4.6
High-level design 18.1% High-level design 0% 8.4
Write integration test plans 4.5% 4.2
Inspection 4.5% 4.2
Implementation 41.3% Detailed designs 8.2% 7.7
Reviews 4.1% 3.8
Test case development 4.1% 3.8
Team design inspections 3.3% 3.1
Code 7.4% 6.9
Reviews 3.7% 3.5
Compile 1.3% 1.2
Code inspections 3.3% 1
Unit tests 5.9% 55
Integration tests 7.2% 6.7
Test 16.1% System tests 9% 8.3
Total 93.3

From the data in Table 3-2, you can see that the average cost for producing a thousand lines of
code is approximately 128 direct labor hours (DLHrs). This is an estimate of the direct effort
associated with creating the work product (the thousand lines of code).

The cost for this code depends on the loaded cost of one labor hour. The loaded cost includes
salary, benefits, and other overhead expenses associated with employing a software engineer, in
this case. Most organizations calculate the loaded cost for every job title in the organization. For
discussion purposes, assume a loaded cost of $156,000 per engineering year. This may seem high,
but you must remember that it includes benefits, taxes, and so on, so the cost of an engineer
earning $100,000 per year quickly reaches $156,000. Because there are 2080 hours in a work year,
this yields a loaded cost of $75 per hour.

$156,000 + 2080 = $75

Based on the number of hours required to build 1000 lines of code and the cost per hour, the direct
cost of producing 1000 lines of code is $9600.

128 DLHrs x $75 = $9600 per 1000 lines of code

However, this assumes that the engineer does nothing but develop code 8 hours a day, 5 days a
week, 52 weeks a year, which is unlikely. Some time must be excepted for attending meetings,
answering e-mail, taking vacations, observing holidays, and so forth. For purposes of this
discussion, assume that half of an engineer's working time is spent developing and that other
necessary organizational activities occupy the other half. Therefore, an engineer has roughly 1000
hours available a year for developing software, which means that a typical individual could produce

just under 8000 lines of new code in a year. The cost becomes $19,500 to produce a thousand lines
of code. This amortizes the unproductive time across all lines of code, that is. $156,000 per year
divided by 8000 lines gives $19,500 per 1000 lines of code, or KLOC.

1000 hours a year + 128 DLHrs per unit of code = 7.8125 x 1000 lines = 7812.5 lines of code per
year

But we must also consider that few engineers produce only new code. Most create new features
while supporting existing features, typically manifested in the form of bug fixes. As discussed in
Chapter 9 on stochastic modeling, an engineer who releases defective code has less time available
to produce new code. As pointed out earlier, the maintenance work is much like a warranty on the
work product. The probability of finding a defect in existing code is proportional to the number of
defects in the product and to the product's usage.

This warranty cost must be added to the cost of software production. Every defect in the completed
product is a potential liability for the engineer who created the software since the engineer may one
day need to fix the defect. The software development test processes will find some defects, and
users will find others. Calculating the liability—the cost—in hours of fixing every defect is necessary,
and we use average values in this discussion. Assume that to fix the average defect detected by
testing requires 1 day of an engineer's time, whereas customer-reported issues require 1 week to
fix. This means a test-detected defect costs 4 hours of valuable development time, and a customer
issue costs 20 hours.™

W Chapter 9 will include various other methods of finding the defect and calculate the effort savings
when the developers detect their own bugs.

As stated earlier, the test team typically will find about 20 defects per KLOC. As reported by Davis
and Mullaney (2003), a typical company releases products with 6 to 7 defects in the final code,
and the customer may find about 50 percent of those defects. This means that every 1000 lines of
new code require about 14 to 14.5 test defect corrections and 3 to 3.5 user-reported defect
corrections. The engineer will release 20 defects to the test process, and 6 or 7 will escape to the
customer, meaning 14 are caught by test. Of the 6 or 7 that escape, about half will actually cause
the customer a problem requiring correction.

@ Davis, N., & Mullaney, J. The Team Software Process in practice: A summary of recent results.

(Pittsburgh, PA.: Software Engineering Institute, Carnegie-Mellon University, 2003).

At 4 and 20 hours per fix, respectively, the total cost for the life of the code is 254 hours, effectively
cutting the engineer's productivity in half. The previous Table 3-2 process ended at the end of
system test, so the defects that escaped to the customer were not counted. This shows up as a
hidden cost to the organization that often goes unplanned. So the true rate of new code production
in the organization is about 4000 lines of code per engineer, not 8000. Of course the numbers will
vary for different types of code and different applications. The numbers here reflect typical
application development organizations.

As an aside, this explains some of the debates on the lines of code that a typical engineer creates
per year. Often, small organizations are credited with higher productivity rates. If an individual or
an organization does not need to support existing code, or if the number of users is low, the
warranty costs do not exist and engineers' productivity can double. The more an organization must
support an existing code base and the higher the number of users, the lower an organization's
effective productivity.

Direct Costs versus Opportunity Costs

The direct cost of quality in the example is $19,500 per thousand lines of code. The direct cost of
quality is the difference between the maximum average lines of code and the lines of code with

warranty costs added. The measurement time frame needs to be long enough to measure usage
and factor in customer-reported defects. However, this represents only the cost of the engineer's

time and not the impact on the entire organization. That is, it measures direct cost but not
opportunity cost. To determine opportunity cost, the calculation must consider lost marginal
revenue to determine actual impact. In other words, if the engineer were not fixing bugs, how much
new valuable code would be produced?

As stated earlier, when making an investment decision, an organization must consider the next best
use of the capital employed. In the case of defect prevention, simply comparing a new process with
an existing process is all that is required. We can compare making a change to the development
process with maintaining the status quo.

The test-centric development process incurs some investment costs in earlier development phases
to create the code and the bulk of the costs later in the development process to test and fix the
code. As discussed, a typical developer produces about 4000 lines of code per year. The assumption
here is that new code carries the bulk of customer value. However, existing code must be
maintained as a form of overhead, and the support costs result in even lower productivity rates than
estimated. In the example, the defect prevention focused process results in more than double the
amount of code supported and at least twice as much valuable new code.

The next step is to determine the effect on the business strategy of doubling the amount of valuable
new code. As mentioned in the section titled "Economic Theory and the Value of Defect Prevention"
earlier in the chapter, an organization's profit includes an opportunity cost, which is factored into
the stock price by market forces. Therefore, changing the cost structure for producing software
must have an effect on the stock price. Since software costs half as much to produce, it must
somehow increase the value of the stock price by either increasing revenue or decreasing cost, or
both. To determine the amount of the change, calculating the opportunity cost is necessary.

It is often difficult to determine the opportunity cost for an organization, but we can use a simple
proxy. Organizations typically maintain a certain ratio of developers to non-developers. For
example, Michael Cusumano writes of the Microsoft development process and describes the
organization as consisting of product managers, developers, and testers.!* The three disciplines
work together in teams in a ratio maintained across the organization. In addition, organizations
need managers, accountants, HR specialists and so on. Assuming that the functions other than
development are staffed to support the development effort, adding 100 new developers requires
some amount of support staff. This fact will be used to simplify the opportunity cost analysis.
Because the number of personnel in other disciplines is a constant fixed against the total number of
software developers, only the total number of developers is germane to the analysis. The
organizational costs associated with areas outside development are some fixed ratio of the software
development cost. This assumption will become important momentarily.

[Cusumano, M. A., & Selby, R. W. Microsoft Secrets. (New York: Simon and Schuster, 1998).

Determining the Returns

The final step of the cost—benefit analysis is to determine the possible total organizational benefit of
a process change. Assume an organization has $100 million per year in revenue. Further, assume
that the organization requires 100 developers to produce and maintain its software. If the
organization wishes to add one more developer, revenues must increase by $1 million. The increase
in revenue must cover all costs to the organization that increase as the organization scales up to
support one more developer. This includes such variable and fixed costs as salaries for employees
added in other disciplines, office space, computers, benefits, utility bills, and so on. Of course some
core operations such as HR and accounting require only a fractional increase and adding one more
employee is not a problem. However, on average, the increase in revenue must be $1 million.

In a year, the new developer will produce 4000 lines of valuable code using the test-centric process.
Therefore, each 1000 lines of code is valued at $250,000. The process improvement associated with
defect prevention results in each developer creating about 10,000 lines of code per year, or $2.5
million worth of value. That is, a thousand lines of code required 93 hours, and 1000 hours of
available time means just over 10,750 lines. Factor in post-release bug fixes, and the number is just
over 10,000.

On the surface, this looks like more than double the profitability. However, the organization requires
staffing at the old $1 million level. If the software company was making 30 percent net profit,[it
was making $1 million on an investment of $700,000 for a net return of more than 40 percent. That
is, the software produced under the test-centric process produced $1M in revenue, of which 30
percent was profit so $300,000 is profit, and $700,000 was required to generate the income.!?
Return on investment is $300m/$700m, or 42.9 percent.

M Microsoft reported more than $16B of operating income on $44B in revenue. so 30% is
reasonable if not low.

@ Remember the prior assumption that most of the cost of development was salary. To validate this
assumption, one need only review the annual report of any large software company.

With the same investment of $700,000 under the defect prevention focused process, the net profit
increases to $1.9 million ($2.5 million worth of valuable code less the $700,000 required to
generate it). The net return is then more than 270 percent ($1.9 million/$700,000). The result is
that the new process completely changes the return on every thousand lines of code.

Costs versus Stock Price

As stated earlier, the opportunity cost is tied closely to the current stock price. It is relatively easy
to determine the effect that improving the process has on the stock price of a firm. Copeland,
Koller, and Murrin propose discounted cash flows as a means to value a company.™ For purposes of
valuation, a company is considered to provide a set of yearly cash flows. To determine the value of
the cash flows, subtract the net current assets of the firm from the current market capitalization.
This provides the value of the expected future profits.

® Koller, T., Goedhart, M., & Wessels, D. (1994). Valuation: Measuring and Managing the Value of
Companies. Hoboken, New Jersey: John McKinsey & Company, Inc.

Cash Flows = Market Capitalization — Net Current Assets

Because the rate of cash flows changes by 2.7 times (from the prior profitability calculation, this
company makes 270 percent profit per engineer), the new market cap of the company is

New Value = (Old Value — Current Assets) x 2.7 + Current Assets
Divide the New Value by the existing shares outstanding to determine the new stock price.

For example, assume a company has $1 billion in market capitalization and 100 million shares of
outstanding stock. The stock price is easily calculated to be $1 billion / 100 million, or $10 per
share. Further, assume that the company has $250 million in cash and other assets, with $50
million in debt. The value of the discounted cash flows for this company is $800 million, or $8 per
share. To get this, simply take the market value of the company and subtract its current assets. In
this case, the net assets are $200 million ($250 million in cash less the current debt of $50 million).
That leaves $800 million of residual value that must be the value of the cash flows as determined by
the market.™

[Remember that the market is estimating future cash flows based on history. If the market values
the company above its current assets, it must be valuing the future earning power.

Now increase the cash flows by 2.7 times. The new value of the discounted cash flows is $2.16
billion. Add in the current net assets of $200 million, and the value of the company is $2.36 billion,
or $23.60 per share. Defect prevention activities at this company more than double the stock price.

Of course it is unlikely that the company would convert all of the new productivity into revenue at
the old value. Instead, it is likely that some of the new productivity would be used to enter riskier

markets or accept projects that have lower returns. According to Clayton Christensen, disruptive
technologies are often lower-return technologies when first discovered.’? In fact, leading companies
are often not able to create product lines with disruptive technologies because their stock prices
prevent it.l*!

@ Christensen, C. M. (1997). "The innovator's dilemma: When new technologies cause great firms
to fail." Boston: Harvard Business School Press.

¥ Using reasoning akin to that just described, although exactly the opposite because in this case the
profitability is reduced.

Conclusion

Nathaniel Hawthorne said that art and economics are strangers. He was probably correct in that
view, which requires that software be turned into a science if economic analysis is to mean
anything. As an organization gathers data and builds good process frameworks, the ability to
directly connect software design activities to the balance sheet is possible. Using traditional cost
accounting and marginal cost methods, an organization can gain tremendous insight into processes
and the ability to deliver customer value. Additionally, by changing the focus to defect prevention,
additional business strategies are made available.

Christensen describes what he calls "The Innovator's Dilemma," which is the dilemma that occurs
when a promising technology is dropped from consideration because of economic constraints.™! A
finding of Christensen's work is that innovation that disrupts an entire industry rarely, if ever,
comes as a surprise to existing firms in the industry. In fact, many incumbent organizations have
already dismissed the new technology as impractical for their existing customers. The reason for
dismissing the new technology is simple: opportunity cost of capital. As explained earlier, investors
require a specific rate of return on their investments, which in turn forces an organization to accept
a very specific risk versus reward portfolio of projects. Company management can invest only in
projects that yield more than the expected opportunity costs. As Christensen found, innovative
technologies often do not provide the required rate of return, so are not considered. Innovation is
the victim of the balance sheet.

W Christensen, C. M. "The innovator's dilemma: When new technologies cause great firms to fail."
(Boston: Harvard Business School Press, 1997).

However, defect prevention changes the cost of capital requirements, allowing an organization to
accept a different mix of projects. By using defect prevention techniques, an organization can invest
in a different technology mix, including disruptive technologies that might otherwise be valued at
below the cost of capital. Therefore, defect prevention not only saves money in the short term, it
allows for long-term innovation and enables a company to invest in disruptive technologies. Defect
prevention helps to prevent the Innovator's Dilemma.

From a profitability perspective, defect prevention is possibly the single most valuable investment
an organization can make. Few investments have the potential for 250 percent plus returns, and as
demonstrated in this chapter, defect prevention activities can result in at least that amount.
Additionally, no other activity short of massive reorganization can change the opportunity cost of
capital, which has the potential to change the markets in which an organization can compete. Defect
prevention allows for innovation in risky technologies and protects a firm's business strategy by
opening completely different markets—no other activity provides the flexibility to innovate in
existing markets while simultaneously opening new markets.

The natural question you may ask is, "If defect prevention is so valuable, why do so few companies
focus formal activities on it?" The answer probably includes fear of the unknown, risk aversion, and
perhaps even ignorance of the potential. Whatever the reason, the first company to get it right has
a competitive advantage over every other company in every other software segment. Defect
prevention itself becomes disruptive to every software segment simply based on the opportunity
cost of capital. Economic profits, that is, profit in excess of the cost of capital, are rare in a mature

field. As the software industry matures, the only advantage an organization can count on will be
implementing defect prevention activities.

Part Il: Defect Detection Techniques

In this part:
Chapter 4: Quality and the Development Process
Chapter 5: Using Productivity Games to Prevent Defects

Chapter 6: Improving the Testability of Software

Chapter 4. Quality and the Development Process

This chapter covers two issues: what software quality is and how the development process creates
opportunities for defects to occur. All defects do not contribute equally to different levels of quality.
Software development is a series of transformations from the original vision.

What Is Software Quality?

How do you define software quality? Do you think it's possible to test a sizable application
completely? How do your processes consider quality? Do you implement and then enter a test-and-
fix phase? As your application becomes larger or more complex, the answers to these questions can
make a difference between success and failure of your product, particularly if your application is
exposed to the Internet.

This section covers the typical model of achieving quality in software, which is based on a model
used for making physical products before mass production was developed, and why this model
doesn't work well. A model of quality that does apply to software is described as well as how your
programming language allows for defects.

Development Methodology and Quality

Software development is unlike traditional manufacturing processes. In software development, only
a single instance of the product is produced rather than a single product being mass-produced in
traditional manufacturing. Improvements in modern manufacturing are applied to the system that
produces the products, and when a defect is detected changes are made to reduce or eliminate the
defect for future products. Software produces a single product that is then mass-duplicated.

Additionally, software has no equivalent of the laws of physics to provide continuity over different
conditions, and the number of decisions made (hence, possible errors) is immense. For example, a
metal beam can be depended on not to liquefy over a wide range of temperatures, whereas a
software function can do anything depending on how it is coded. An error in a single decision could
have an extreme effect. As a consumer of software, you may have wondered how seemingly
random failures of software occur, and the simple answer is, "Software can do anything."

Physical manufacturing has evolved over time to use processes that improve productivity and
quality. Originally, production consisted of making products that were shaped and modified until
they worked (handcrafting). Then, in the early 1800s, using interchangeable parts in the
manufacture of rifles began: the quality of components was such that they could be interchanged
between rifles. Henry Ford used a moving assembly line process for mass production of the Model T
(vastly outcompeting other manufacturers who still produced cars one at a time—an example of
parallel versus serial assembly). The Japanese used Deming's insights into manufacturing and
instituted quality processes.

Through history, manufacturing has been moving away from the handcraft model of banging each
product into shape to achieve quality because correcting each produced product is inefficient
compared with improving the production process to eliminate the defect in the first place (moving
quality upstream). Additionally, the handcraft model depends on reasonably complete testing of all
the important characteristics of the product.

In physical production, quality monitoring is used to verify that the processes that instill quality into
the product are functioning correctly. If a product fails verification, it is rejected and the production
process is improved to reduce that kind of defect.

In software, using multiple layers of verification, from reviews (spec, design, and code) to testing
(unit, feature, scenario, system, stress, and customer), is one method of detecting defects to

improve quality. This type of verification operates under the premise that defects not detected by
one layer will be detected by a later layer in the gauntlet. Of course, large numbers of defects are

still detected by customers after release. You must accept the fact that it is not possible to test
software completely.

Physical products have far fewer opportunities for failure than even the simplest software
applications do. Yet, in software, we primarily use this handcraft model of production that was
supplanted back in the 1800s. But at least testing isn't completely manual. Static testing tools and
process improvements are embodiments of the modern quality production methodology—that is,
feedback flows back into the production process.

Best Practices

Software applications are incredibly more complex than any physical product is,
yet typically for software we still use quality techniques that were abandoned in
the 1800s for the testing of physical products that are many orders of
magnitude less complex and far more testable than software is.

The Myth of Complete Testability

We can't completely test software. In fact, we can test only an infinitesimal percentage of software
functionality, yet there are many processes that depend on this false assumption of testability and
obsolete quality technique. For example, the assumption that a gauntlet of tests can catch defects
that may escape a single test is based on the tests covering a high percentage of product
functionality. Defects still escape and are discovered by customers. Such processes are inefficient
and produced low quality decades ago when applications were smaller and defects were more
acceptable. Consider how your development processes, roles, and organization reflect the myth of
complete testing. Three aspects of the complete testing myth are widespread:

e Quality is a seasoning: fix bugs here and there until it tastes right.
Quality is testing's job: testing creates quality.
Quality is a tax on development: implementation is the primary goal; fixing defects is
overhead.

Consider how your organization views quality. Do developers make the excuse, "A test should have
caught this" or "The defect is fixed; who cares what caused it? Just get a new version." The first
excuse implies that quality is not a developer's job. The second illustrates a lack of concern for the
customer and learning why a defect occurred so that it can be prevented in the future.

The typical waterfall model of software development reflects the myth of testability—build it and
then bang it into shape. Even when development processes do not follow the waterfall model, the
separation of steps reinforces the attitude that testing is a tax on implementation; this is further
reinforced by having separate development and testing staffs. A postmortem evaluation typically
provides little learning because it is often viewed as another tax on implementation; it is performed
after development, so many issues that occurred in the past may have been forgotten; and unless
there is honesty, important issues won't surface. If the culture of your team is to assess blame
rather than learn from mistakes, it is natural for people to understate issues.

How do you treat your customers during the development process? When are customers involved—
before the design process or mainly for prerelease (beta) testing? Often, customers are used as an
adjunct to the testing process to find scenario-oriented and configuration-based defects. Customers
may report usability problems, but often by the time the customer is involved there is not enough
time left in the schedule to make more than minor changes in response to customers.

Typical defect tracking systems reflect the handcraft model—they record all sorts of information
about the processing of the defect through to resolution but really contain little information that
could be used to learn from a defect to prevent or reduce similar defects in the future. The defect
taxonomy (described in Chapter 10, "Defect Taxonomies") and the prevention tab (described in

Chapter 14, "Prevention Tab") are examples of the kind of information to gather if you want to learn
from defects; contrast it with your defect tracking system.

Current Testing Methods and Quality

There's a simple fact about testing: At best, all testing can do is indicate the lack of quality. Testing
can never provide significant coverage of an application’s functionality. If few defects are found, it
can be the result of testing areas that have already been repeatedly tested or of testing using tests
that are incomplete rather than an indication that the product has no defects. It is not possible to
tell the difference between high-quality code and poor testing.

If No One Exploits It, Is It Secure?

Security is a great example of this. Before widespread use of the Internet, software developers were
not very concerned about security exploits because the means of exploitation were limited (such as
running a program you got from someone else). Because computers were isolated, there was little
value to be gained in terms of exploitation. The attitude was that if a defect was hard to encounter,
it wasn't as important to fix as an easily encountered defect. Security wasn't an important issue.

Then the Internet arrived, Web sites proliferated, and computers became interconnected. Suddenly,
a multitude of means to exploit vulnerabilities existed, and the value in terms of exploits affecting
other systems and theft of information such as identities or financial information increased.
Malicious people actively began to try to find security defects, so hard to encounter was no longer a
valid excuse for not fixing a security defect. Many defects, such as null pointer references, division
by zero, or memory leaks, can become a denial of service attack if they can be triggered remotely,
so they must be addressed.

There wasn't a lot of testing for security defects before the widespread acceptance of the Internet,
hence few such defects were found—but does that mean quality was high? No, in fact this is an
example of a deceptive indicator of quality.

Deceptive Indicators of Quality

Code is inherently nonlinear: a function may work correctly for a large number of parameter values
and combinations, but a certain combination may cause a failure. Every decision in a function is an
opportunity to do something different based on a parameter or external state. The external state
can create dependencies on the execution of different bodies of code—one function may affect
external state so that another function that uses that state fails.

You really can't determine the number of potential defects in an application from the defects that
have already been detected—even though many sampling techniques assume a reasonable
coverage of the functional space. Even if you analyze code coverage of tests, you have verified only
that a section of code worked for the parameter values tested, not that it will perform correctly with
different parameters, configuration, or state.

So, if you have no reliable estimate of the total number of defects, how can you determine when a
product can be shipped? A slump in defects reported (a zero bug bounce) can occur for many
reasons besides actual quality (and typically does, considering defects in released products). How
many times have you had indications that quality has been achieved only for this to be proved false
when the test team changes focus?

Tests have two purposes: preventing regressions and discovering new defects. After a test discovers
a defect, you hope the defect won't occur again after it is fixed, but a small percentage of
regressions (defects reappearing because of changes made in correcting another defect) do occur.
Typically, the trend is that after an initial shakeout phase, regression failures become relatively
rare. If your testing staff restarts testing of a new version, you can expect initially low defect

reports because they are testing what they just tested in the previous version unless regressions
are degrading the code.

A test pass is typically a combination of automated and manual tests, and it is not instantaneous for
large software applications. This can be because of the sheer amount of automated tests or because
some testing is manual. Automated tests are preferable to manual tests for consistency's sake,
increased rate of testing, and portability (anyone can run these tests). Manual tests can be script-
based, in which case they are similar to automated tests, only slower and less portable because a
person must be involved in execution. Manual testing can also be more freeform and ad hoc, which
after the shakeout phase tends to discover most of the new defects because manual tests may be
testing areas not tested by the automated tests. Often, after ad hoc testing discovers a defect, an
automated test is added to detect any future regression.

There are two other forms of manual testing: self-hosting inside the company and external self-
hosting such as beta testing (see Chapter 20, "Pulling it All Together"). Any period of testing is a
mix of regression (automated or script-based manual) tests and ad hoc tests, where most new
defects will be discovered. The rate of defect reporting will correlate with this mix, and without
knowledge of the mix over a time period a false zero bug bounce may occur.

For example, if a regression pass takes two weeks, involves a manual portion, and there is an
overlap of people doing the manual portion with ad hoc testing, you could expect low defect
reporting for that first week and a rise once ad hoc testing ramps up again. If your defect counts
are low, you could hit zero defects during this first week and falsely believe you've turned the
corner on defects. Even the ad hoc testing may have a delay in reporting because time is involved
in installing the new version, testers may not immediately switch to the new version, and people will
tend to repeat a significant amount of their previous operations before trying new ones.

A better approach is to continue a test cycle from where it left off in the previous version rather
than starting over because it is less likely that what had been tested will fail in the new version as
opposed to what hadn't been tested in the previous version. Ad hoc testing needs to start as soon
as possible after some level of regression testing has verified a basic level of quality. The goal is to
find defects sooner rather than to look for regressions. More negative feedback must be given to
developers for introducing and testers for not detecting regressions rather than for introducing new
bugs—regressions are far more costly.

You Can't Test Everything

Effective testing is not impossible but requires you to embrace the fact that significant test coverage
is not possible. So how can you effectively test and know the level of quality you are providing to
your customers? Accept the idea that the basis of current testing is a myth and think about what
quality is from the customer's point of view.

Subjective Quality: Customer Perception

To customers, quality is a subjective measure. If customers do not encounter a defect, they may
perceive quality as high, even though a defect exists. So, for software development organizations,
the quality goal is for customers not to encounter any defects.

Scenario testing, or performing tasks your customers do, is a good way to improve customer-
perceived quality. Because it is not possible to test even an insignificant portion of functionality, you
should focus testing on what your customers may encounter. Customer-perceived quality is
measured by mean time between failure (MTBF). This is a quality metric that is meaningful.

Ensuring that perceived quality is high means that organizations must reverse the typical attitude
that considers fit and finish defects to be less important than other defects are. Fit and finish
defects are important contributors to a customer's perceived quality of a product. With software,
customers make the same assumption that they do with physical products: if the manufacturer of

the product showed little concern for surface issues, that lack of concern is assumed to follow into
less apparent aspects of the product. For example, car manufacturers have known this for
decades—sloppy paint jobs, badly fitting doors, noises, and lack of ergonomic design can lose a sale
no matter how great the technology in the engine is. Do you give fit and finish bugs a lower
priority?

Instead of primarily concentrating on low-level tests, such as unit and feature tests, which are
useful initial shakeout and regression tests, run tests that mirror typical customer scenarios. This
pays a double dividend because determining customer usage scenarios should be an important input
into feature design. Such scenario testing does cover a wide range of perceived functionality, so a
value such as MTBF in testing scenarios is a directly meaningful measure of quality.

The likelihood of encountering a defect can be used to determine where you look for defects. Areas
where code has been changed, for instance, are likely places to find new defects. A combination of
analysis of code coverage of scenario tests and code churn can prioritize scenario testing on likely
sources of new defects (see Chapter 8, "Risk Analysis").

Scenario voting, as described in Chapter 15, "Scenario Voting," gives customers a way to describe
the satisfaction and importance of scenarios as well as report defects. The satisfaction and
importance information can be used to determine a scenario testing mix. Current testing
methodology can include stress testing (see Chapter 20, "Pulling It All Together™) where a set of
tests is repeated in parallel over a long period of time to uncover defects. By focusing such stress
testing on scenarios with a wide variety of configurations and cases, MTBF values can be generated
and used as a target for release quality.

Even better than using the scenarios that have been defined by scenario voting and voting results is
actually to know what your customers are doing. Rather than your depending on scenario voting, a
special version of an application can be metered to describe the operations that a user is performing
to generate scenarios and their frequency. Of course, there can be confidentiality issues with this
data. However, major customers may be quite interested because such testing can ensure that
when the product is delivered it will have a high MTBF for their common scenarios. General beta
testing could be transformed from an adjunct to internal testing to include defining common usage
patterns for scenario testing.

Objective Quality: Security

Security is an objective measure. Malicious parties are actively seeking security defects to exploit.
You can't ignore a defect because it is unlikely to be encountered if it can be a valuable exploit to a
malicious user. You need to have a zero tolerance policy for security defects. Security defects need
to be made—as much as possible—impossible rather than unlikely. A zero tolerance policy means
implementing automatic verification of any human process and verification that isn't based on
execution.

Catastrophic failures are important liability issues. In software, these revolve around security and
data loss. The defects targeted by scenario stress testing are those encountered in typical
operation, so such testing will not necessarily uncover many security exploits because such exploits
are usually atypical operations.

In trying to achieve zero security defects, it should be obvious that any dynamic (actual execution
of the code) testing is ineffective—you can't test everything under all conditions. (Such testing is
useful for regression testing, not ensuring that no security defects exist.) Zero tolerance implies
static testing—validation involving scanning the source code rather than executing it. Modern
compilers are examples of static testing, such as detecting uninitialized variables, dead code
branches, and branches that don't return a value.

Product Development as Transformations

Simply put, software developers make dreams into reality. A less colorful description of what we in
the software industry do is, we satisfy customer needs with our products. Meeting or exceeding
customer expectations is our goal. Our products consist of two parts: The software and the
documentation. Customers expect a product we build to have the following characteristics:

Functionality Product improves accomplishment of user scenarios.
Reliability Product provides consistent results and does not lose or interrupt work.
High quality Minimal errors are encountered by the user.

Consistency A consistency of concepts and interfaces across product and between product
and documentation exists.

A customer evaluates these aspects in determining the value of a product.

A software defect is a discrepancy between implementation and expectations. At the highest level, a
defect is a difference between customer expectations and the product, not merely between the
product and its manual. Consider a product and customer expectations to be two independent
expressions of customer needs; unfavorable discrepancies lower the perceived value of the product.

The stages of the product cycle typically consist of many transformations (translations) and
verifications such as reviews of written documents and testing of code. The final result delivered to
a customer is the code and the documentation. During development, an additional result is
verification (tests). All three of these results can be considered translations, and they are verified
against each other. Tests verify that the code is consistent with the specification (although the test
may also be in error). Customers may report discrepancies between the code and the
documentation. A stage in the product cycle often consists of a combination of the basic
transformations:

Translation A transformation of form without loss of detail or meaning

Aggregation Collecting information from multiple sources into a single representation
Distillation Reducing information through abstraction, simplification, and/or filtering
Elaboration Expanding information through supplying or creating more detail

When transformations are done by humans, a possibility of error naturally exists. Context can be
lost, nuance can be lost, simplifications can be made, parts can be forgotten, and myriad other
types of error can be committed.

For example, when Coca-Cola was first sold in China, its erstwhile slogan "Coke adds life" was
translated into Chinese. The Chinese ideograms, when translated back into English, read, "Coke
brings your ancestors back from the dead"—the result of using reasonable synonyms in the
translation if you don't know the context.

Adding Verification Steps to the Product Cycle

To address this possibility of transformation error, verification gates (or steps) typically are added
between stages of the product cycle, as shown in Figure 4-1. A development process usually has a
typical set of document and code review steps—feature, scenario, architecture, design, and code.
Because the reviews are also human processes, they too may contain errors. Adding a verification
gate for every manual step could continue indefinitely because every added gate is a manual step
and hence may also contain errors. But this rapidly reaches a point of diminishing returns.

Figure 4-1. Stages of a typical development process and
associated verification steps

Test Translation

‘-._-._..--'
* Plan
) - #_ Plan
Code Translation
, .
= Design Reviews

{ Unit Test }
{ Feature Test)

Scenario Test

Translation comparison)~ y

So, what is done instead to detect the defects that escape a single review of a manual step?
Additional translations independent of the code and comparison. Tests are an example of
independent translation—a tester reads a specification of the expected behavior and translates that
into tests that determine whether the translations match. The assumption is that the two different
translations, code and test, have different errors—that each blocks a different class of error and in
combination they block more errors (the Swiss cheese model). But there is no guarantee that the
combination spans all possible defects; the complexity of software makes it impossible to test any
application completely. Additionally, because code and test are based on an earlier translation, an
error in the earlier translation tends to be reflected in both translations. Finally, a large amount of
time passes (and a sizable implementation effort is invested) before many defects in the earlier
translation are discovered.

At the end of testing, defects may still exist, as shown in Figure 4-2. Scenarios represent the
expectations of the customer, what the product is expected to do. The product may not completely
cover each scenario, and it may provide functionality beyond the scenarios. The product tests may
not test every scenario, and they may not test all of the code's functionality. The area where there
is higher confidence that the product will meet customer expectations is the area where there is
code for the scenarios and there are tests for that code. There can still be defects because the
scenarios may not completely represent customer expectations, and even if a test covers an area, it
is very difficult to test it completely.

Figure 4-2. Intersections of code, tests, and scenarios and
their relation to defects

Coded, but not tested
Mot coded or
tested

Code fails test
Coded, not part

of scenario

Code passes
test

The problem is the lack of independence of the translations, code and test, from each other.
Specifications often are out of date or not detailed enough, so the code is usually considered the
more accurate translation for the purpose of designing tests. The purpose of independence is to
reduce propagated translation errors in code by catching them with a parallel translation in the form
of tests. When tests use code as one of their sources for translation, as does white box testing, both
translations may have the same errors and the test can let defects pass. (see Figure 4-3, and read
the sidebar titled "White box versus black box testing," which follows.) Because of this lack of
independence, an error in the implementation may be reflected in the test, which can mean that an
implementation error will go undetected.

Figure 4-3. White box testing can miss coding errors that
would be detected by black box testing.

Test error
Black box
)

Test error
Design error

(: Test error
White box

Test error

i<

g
:

Code error

White box versus black box testing

Typically, white box testing (when tests are written with knowledge of the
implementation) is considered better than black box testing (when only the specification
is used) because it can test edge conditions that are not necessarily known from the
specification. However, there are drawbacks when you consider these types of testing
from the viewpoint of translation.

White box testing is best used to verify compatibility from version to version. A white box
test written on an initial version can detect incompatible changes in a later version. White
box testing is a case of self-referential testing—testing an implementation using itself as a
guide. Many output values tests are also self-referential when they test against last
known good values. All of this reflects one basic problem: our chief artifact for
specification is the code because often documents are out of date and not executable.

So, what is done to reduce translation errors? Multiple levels of test translation are included in the
product cycle—function, interface, scenario, performance, stress, end-to-end scenarios, and system
testing, for example. Then there is internal self-hosting, prerelease version to customers, and
compatibility testing. Again, the assumption is that a combination of methods can cover more usage
scenarios and that there are relatively independent verifications at each level.

But after all these verification steps are completed, customers still detect defects.

This is because, in this whole process, there is an unstated assumption in play: once translated, the
original doesn't change. This is rarely true. Discovery of defects in later stages of the product cycle
often uncovers defects in the original scenarios or design. This isn't a fault of the translation; the
original wasn't complete or correct. And the inaccuracy of the original isn't an unexpected fault
because providing adequate detail for complex scenarios is a complicated process.

Acknowledging Defects in the Original Specification

We recognize the possibility of error by providing multiple review steps as code progresses from
scenarios to implementation, but we really don't provide for error in our original specifications. In
practice, a review step focuses mainly on comparing against the immediately pevious step rather
than against the original steps (far more corrections are made to the immediately previous result).

New information tends to be reflected in code and less likely in previous stage artifacts such as
scenario or design documents. If the original isn't changed to reflect corrections, any parallel
transformations may become out of sync. For example, documentation may not agree with the code
and tests may be incorrect.

There is an underlying assumption that errors in a much earlier stage can be corrected locally, that
is, by correcting the last result rather than doing a new translation from the stage of the error. For
example, a design flaw may be discovered, and instead of correcting the design and its document,
local changes that complicate the code and that don't completely resolve the defect are made. This
can result in repeated updates being made to a flawed design. Because of the delay inherent in
defect detection, considerable time and effort may be invested in the current design and a new
design may have defects, too. Other code may be dependent on a design, which increases the cost
of a design change. Schedule pressure may manifest as a result of the late discovery of design
defects. A culture of defect prevention makes a greater effort in preventing defects in the early
stages of development and more often avoids short-term tradeoffs. (See Chapter 17, "Moving
Quality Upstream.")

The nature of software development, as a human endeavor, includes the possibility of error. Each
stage typically involves translating the results of the previous stage, so any errors tend to
propagate forward. Tests are also a human endeavor and are based on the results of a previous
stage common with the code. Until tests are run against code, multiple manual reviews may have
been done, but they can't be guaranteed to be error-free. In a large product, everything tends to be
on a large scale—the number of developers, the number of bugs, the size of the code, and its
complexity. On this scale, you can't afford to correct each defect in isolation; you must learn from
defects to improve development processes and tools to reduce similar defects in the future.

Transforming Design into Code

The language you write your code in provides opportunities for error. Design concepts that are
definitional at the design level often become referential in code: rather than a single expression of
the concept, the concept is expressed everywhere it is used. The abstraction level of programming
languages is close to the underlying processor, which provides powerful expression, including
incorrect expression (for instance, unverified casting, no units enabling byte vs. character confusion,
modifying persistent state, and buffer overruns) and multiple or complex ways of writing a
particular section of code that makes the recognition of good or bad patterns by code analysis tools
more difficult and error prone.

Counterintuitive Syntax

One very simple coding error in the C family of languages is mistakenly to use an equal sign (=) in
an if rather than the equality operator (==). This mistake results in an assignment being done
rather than a comparison, and if the left-hand side is not zero, the if succeeds. Some typical

examples include not using a return value and, as mentioned, using the assignment operator (=)
instead of the equality operator (==) in a C/C++ if statement. (See the code listing that follows.)

Simple Error Patterns Involving If

if (a==2) /1 A valid conmparison with 2

if (a=2) /1 Likely semantic error, assigns a to 2

if (2 == a) /1 Coding convention to cause error if = used

if (2 =a) /1 Syntax error, reversing operands causes error

The idiom of reversing the if causes the compiler to generate an error when the left-hand side is a
constant (as in the preceding code), but of course reversing a == b will not cause an error when
both terms are variables.

The designers of C could have used another symbol for assignment, but there wasn't an obvious
one on the keyboards of the day (the Pascal language used := for assignment). They could have not
allowed assignments in if statements, in which case the equal sign (=) would mean equality in an if
statement, but assigning a variable to a logical expression (such as a <assignment> b <equality>
¢) would expose the ambiguity again. The designers of C decided multiple assignments would be
allowed, so a = b = c assigns a and b to the value of c.

This example is interesting from the point of view of human error.™*! For at least a decade of
mathematics in school, you were taught that the equal sign (=) means equality, not assignment.
The designers of C changed the meaning of the equal sign, so the long-learned habit of writing
equals for equality is semantically incorrect but syntactically correct. To code correctly, you must
break a long-held habit, turning an automatic habitual action into a conscious, directed one. James
Reason has a term for this error, strong habit intrusion. This syntax choice created this whole class
of likely error. In the Pascal syntax, the error can't happen.

¥ James Reason, Human Error (Cambridge, England: Cambridge University Press, 1990).

Lost in Translation

It is difficult to infer higher-level design from code for both validation and manual code review
because there is quite a translation distance between a design and code. Compilation to machine
code is deterministic, yet the reverse translation is difficult and loses information. And compilation is
based on fixed code generation and optimization rules, unlike a developer translating a design into
code. The expansion factor of translating a design into code also tends to be large, which makes it
harder for a reviewer to validate that code matches a design.

Another major source of errors is that, in translating design to code, concepts that are definitional
(defined in one place) in the design become referential (code added for each usage) in the code.
This turns a 1:1 mapping into a 1:N mapping, which increases the possibility of errors of omission
(forgetting to add code for a reference) and transcription (making a mistake in expression). The per
reference instantiation of a design definitional concept is not necessarily identical in each reference;
it may need to be transposed in various ways for the context in which it is used. This can make it
hard to verify that the implementation is present and correct (manually or automatically) and
obscure the design. If the design changes, finding and changing these instances can be error prone
and difficult.

Class libraries are used to represent design-level concepts, but nothing forces a developer to use
them, and as a result of the restrictions of a class developers may need to write their own different
implementation. Developers may "roll their own," which potentially can introduce many kinds of
error. Not only does such duplication increase the size of code, but there is also the possibility of
making a mistake in the individual instantiation, and if a change in the concept is made in the
future, it can be difficult to find all of the duplicates. The following examples of how language-level
concepts can contribute to errors are described in the following subsections:

Type systems

Buffer overruns

Memory allocation

Non-null object references

Use of signed rather than unsigned integers
Integer overflow

Example 1: Type Systems

In physics and other sciences, units are a method to verify the validity of a formula (the operations
on the units result in the units of the result) and also suggest which formulaic transformations can
be used to solve a problem or what additional data is needed. For instance, given a speed in miles
per hour, it is obvious that multiplying by time will give distance.

The type systems of languages such as C/C++, Java, and C# are weak for scalar types. There are
no numeric units, and everything is folded into integers and floats. In some of the languages, even
Booleans are folded into integers, and all three languages fold enumerations into integers. Casting—
particularly unsafe casting—provides all sorts of opportunities for errors. You can't even declare a
variable is a pointer that is not allowed to be null. Many defects are the result of unit conversion
such as string length (excludes the terminating 0), memory length (which, for a string, includes the
0 and is measured in bytes), character length (which is half of string length for double byte
characters), pixels, points, and others. This weakness contributes to the loss of information in
translating a design into code.

Example 2: Buffer Overruns

Consider buffer overruns caused by the use of unsafe string functions, such as copying a string into
a fixed-size buffer. Because of historical compatibility, unsafe C functions such as strcpy are in
every C runtime library. You may define a safe version of strcpy that doesn't allow copying a string
beyond the buffer size and add a static validation that the unsafe function is not used. But why not
just remove these dangerous functions and make the error inexpressible to even the compiler?

Even when you restrict the use of the unsafe function, you cannot prevent an inline iteration from
copying a string unsafely or getting the string length and using memcpy to copy the string unsafely.
Languages provide all sorts of means of expressing unsafe operations, and it can be difficult to
detect all the variations. The original cause of buffer overruns was a performance consideration:
Passing a buffer, typically allocated on the stack, with the size to be filled in rather than allowing the
called function to allocate the memory and return it.

Example 3: Memory Allocation

Consider memory allocation. There are typically only a couple of patterns of memory management:
An object is owned by another object and is created when that object is created and deallocated
with it; stack allocation, which is deallocated when the function is exited; and everything else is "roll
your own." Everything except the first two become individual expressions that can be miscoded, so
is it any wonder that memory leakage and dangling pointers happen?

Managed memory models with garbage collection provide another model that eliminates dangling
pointers but only reduces but does not eliminate memory leakage. The managed version of memory
leakage is the accidental retained reference to obsolete data; a single reference may indirectly
retain a large number of objects through indirect references. All that garbage collection does is
eliminate the unreferenced objects, not the accidentally still-referenced objects.

An analysis of the memory models used in an application could be abstracted into a set of library
classes that would reduce errors both because there is only one version of the model rather than

multiple inline expressions of the model and validation could be aware of these classes and detect
more errors.

Life span is a key concept for allocated objects, so why not provide classes to implement the various
kinds of life spans objects have? For instance, a common life span is a set of objects may live until a
function that called the functions that allocated the objects returns. For example, a class could be
created and an instance passed in to the called functions that is used to allocate any objects and
retains the set of objects allocated. Freeing that object would free all objects allocated through it.

Example 4: Non-Null Object References

The limits of what can be defined about a type can change what is conceptually associated with the
type into added code for each reference to an instance of the type. This is a case of a 1:N mapping
from concept to implementation (as shown in the following code listing).

Types Don't Include Null Constraint

public void PlaceOrder(Product product, int quantity)
if (product == null)

t hrow new Argunent Exception("Product nust not be null");

You can't define NonNullProduct, so instead everywhere you use Product, the body of the method
needs to have a check for a null value. An error is possible in inserting all of these parameter checks
or forgetting to do it at all in a method. In addition, a compiler or validation tool doesn't recognize
the pattern, so it can't detect a call such as PlaceOrder(null, 4) as an error or detect the absence of
the null check. The error can be detected by visual inspection or execution, which assumes you test
all methods with such invalid parameters. Explicitly writing tests that use invalid values and adding
annotations to describe a non-null type for static tools are two means of addressing this issue.

Example 5: Using Signed Integers Rather than Unsigned
Integers

If you look at the preceding example, you will see another type of common error: Quantity is
defined as a signed integer, which implies that ordering a negative number of items is permitted.
That may certainly be reasonable for returning items but really shouldn't be in an order placement
method. Imagine a Web site that allowed you to order negative quantities—you may end up with
money refunded to your credit card even if you never bought anything. Careful review looking for
improper use of signed integers can address this issue. The use of size_t for counts rather than int
is also an example.

Adding a Check for Negative Quantities

public void PlaceOrder(Product product, int quantity)
{ if (product == null)

t hrow new Argunent Exception("Product mnust not be null");
if (quantity < 0)

t hrow new Argunent Exception("Quantity nust not be negative");

But why add this check? The quantity parameter should have been declared as an unsigned integer.
There are many reasons for using signed integers instead of unsigned integers, including history,
habit, and sloppiness. The original C language' did not have an unsigned integer type or
exceptions; they were added in later versions of C. The single return type of C family languages
(and for habit reasons even now where output parameters are allowed) often overloaded an
unsigned integer return value with negative values for an error indication or other reasons. For
example, the C# String.IndexOf function returns the character index of the first occurrence of a
string and —1 if the string isn't present.

@ B. W. Kernighan and D. M. Ritchie, The C Programming Language (Englewood Cliffs, NJ: Prentice
Hall, 1978).

Overloading an Index with an Error Value

Code View: / Show All
public string AppendAfter(string sourceString, string subString, string
appendStri ng)

{
i nt i ndex = sourceString. | ndexOf (subString);
return sourceString. Substring(0, index) + subString +
appendString
+ sourceString. Substring(index + substring.Length);
}

The preceding code will throw an exception if the subString is not present in the sourceString
because IndexOf will return negative one (—1) and Substring(—1) will throw an exception—all
because of overloading the return value with an error. A better solution for this issue depends on
whether the caller is supposed to ensure that the substring is present or not. In the first case, the
preceding implementation is merely misleading because the exception thrown doesn't clearly
indicate that the problem in the substring isn't in the source string but instead that you specified an
invalid character offset. In the second case, it would be better to use an exception or separate error
return value, as shown in the next code listing.

Alternate Definition of IndexOf

Code View: / Show All
public uint I ndexOF{String sourceString, string subString)

{

i nt i ndex = sourceString. | ndexO(subString);
i f (i ndex < 0)
{
t hrow new Qper ati onException("Substring not found");
}
el se
{
return (ui nt)index;
}

public string AppendAfterlfPresent(string sourceString, string
subString, string

appendStri ng)

{

try
{
ui nt i ndex = IndexOF (sourceString, subString);
return sourceString. Substring(0, index) + subString +
appendString +

sourceString. Substring(index +
substring. Length);

}
catch (Operati onException)
{

}

return sourceString;

You can argue that using an exception is too expensive in terms of execution time, that it is really a
matter for improving code optimization, providing a different error model (see the sidebar titled
"Prolog error model," which follows), or some other construct. Using a separate error return value
does not guarantee that the caller will check it first, so the issue of what to assign the return value
to exists.

Prolog error model

Prolog has an interesting model of errors and variables. Failure is an innate concept. Any
equivalent of a function call has two means of returning control to its caller:

e Success, which calls the return address

e Failure, which returns to the last point where there was a choice and unbinds all
variables

It's quite a different model and has some interesting characteristics after you understand
Prolog's concepts. It is one of the few languages where failure (error) is an innate part of
the language's concept.

You could reverse the index and the error indication by returning a value that indicates whether the
IndexOf succeeded and changing the output parameter to a reference as follows.

Definition of IndexOf Not Using Exceptions

Code View: / Show All
public bool IndexOr{String sourceString, string subString, ref uint
i ndex)

{

i nt strindex = sourceString. | ndexOf (subString);

if (strlindex < 0)
{

return fal se;

}

el se

{

ndex = (uint)strlndex;
return true;

}
}
public string AppendAfter!|fPresent(string sourceString, string

subString, string
appendStri ng)
{

bool not Found;
uni t i ndex;
not Found = I ndexOf (sourceString, subString, ref index);
i f (not Found)
{
return sourceString;
}
el se
{

return sourceString. Substring(0, index) + subString +
appendString + sourceString. Substring(index +
substring. Length);

The preceding example won't compile because reference parameters—unlike output parameters—
are not guaranteed to be set. There is no valid index if the substring is not found, and supplying one
just allows for the error of using it without checking if notFound is false. The compiler doesn't know
that the index variable would be set only if notFound were false. You could initialize the index to O,
but that would open up the possibility of using index when notFound is true. That's why an
exception is a better method to use for semantic reasons, even though it may be slower.

Note that the name of the preceding function has been changed to AppendAfterlfPresent. The
assumption of what happens when the subString isn't present should be explicit in the name of the
method rather than requiring the developer to look up the behavior of the method to see what
happens if the string is not present. Both AppendAfter, which throws an exception if the subString
isn't present, and AppendAfterlfPresent, which does nothing if subString isn't present, may be
useful methods for different callers. If the design is such that subString should be present,
AppendAfter should be used so that if some other defect causes it not to be present an exception is
thrown and the issue can be diagnosed rather than invisibly not appending. Serious defects can be
hidden by such helpful defaulting in error conditions.

Example 6: Integer Overflow

Interfaces that use signed rather than unsigned parameters are open to security attacks using
negative numbers, as in the previous example of using negative quantities to get refunds. In
addition, even correctly used unsigned numbers can be used in an attack through overflow
wrapping. If two numbers are multiplied together, choosing large enough values will cause the
result to exceed the resolution of the integer, resulting in a vastly smaller result than expected or
even a negative result.

By default, runtime systems at best detect errors such as divide by zero but not integer overflow.
Specific code needs to be added for each instance of a possible overflow operation (another
definitional concept changed into per reference).

C# provides a checked construct that throws an exception on integer overflow. You could sprinkle
your code with checked constructs around integer operations, but just as with the previous
example, errors can be made and places missed. Instead, at least in C#, you can detect integer
overflow centrally in a type definition. However, it is quite a few lines of code, as follows.

Overflow Safe Positive Integers

Code View: / Show All
struct Posl nt
{
private ui nt Val ue;

public Poslnt(uint val ue)

this.Value = val ue;

}

public override bool Equal s(object obj)
{ return this == (Poslnt)obj;

}

public override int GetHashCode()

{ return Val ue. Get HashCode() ;

}

public override string ToString()

; return Val ue. ToString();

public static Poslnt operator +(Poslnt a, Poslnt b)

{
}

public static Poslnt operator *(Poslnt a, Poslnt b)

{
}

public static Poslnt operator -(Poslnt a, Poslnt b)

{
}

public static Poslnt operator /(Poslnt a, Poslnt b)

{
}

public static Poslnt operator 9% Poslnt a, Poslnt b)

{

return new Poslnt (checked(a.Value + b.Value));

return new Poslnt (checked(a.Value * b.Value));

return new Poslnt (checked(a.Value - b.Value));

return new Poslnt (checked(a.Value / b.Value));

return new Poslnt (checked(a.Val ue % b. Val ue));

}

public static boo

{
}

public static boo

{
}

public static bool

{
}

public static boo

{
}

public static boo

{
}

public static boo

{

return a.Val ue

return a.Val ue

return a.Val ue

return a.Val ue

return a. Val ue

return a.Val ue

operator ==(Poslnt a, Poslnt b)
== b. Val ue;
operator !=(Poslnt a, Poslnt b)
I = b. Val ue;
operator >(Poslnt a, Poslnt b)
> b. Val ue;
operator >=(Poslnt a, Poslnt b)

>= b. Val ue;

operator <(Poslnt a, Poslnt b)

< b. Val ue;

operator <=(Poslnt a, Poslnt b)

<= Db. Val ue;

}
public static Poslnt operator +(Poslnt a)
{
return a;
}
public static Poslnt operator ++(Poslnt a)
{
return new Poslnt(a.Value + 1);
}
public static Poslnt operator --(Poslnt a)
{
return new Poslnt(a.Value - 1);
}
public static bool operator !(Poslnt a)
{
return a.Value != 0;

}

public static inplicit operator

{
}

ret ur na. Val ue;

ui nt (Posl nt a)

public static inplicit operator Poslnt(uint a)

{
return new Poslnt(a);
}
public static inplicit operator Poslnt(int a)
{
return new Poslnt (checked((uint)a));
}

Using Overflow Safe and Unsafe Integers

Code View: / Show All
static void Main(string[] args)
{
i nt i,j,k;
Pos Inti Poslnt, jPoslnt, kPoslnt;
i = 2000000000;
j = 2000000000;
k =i *j; /1l latent overflow -
1651507200
Trace. WitelLine(string. Format ("{0} = {1} * {2}", k, i, j));
i Poslnt = 100;
j Posint = 200;
kPoslnt = iPoslnt * jPoslnt;
Trace. WitelLine(string. Format ("{0} = {1} * {2}", kPosint, iPoslnt,
jPosint));
i Posl nt = 2000000000;
j Posl nt = 2000000000;
kPoslnt = iPoslnt * jPoslnt; /1 Throws exception
Trace. WitelLine(string. Format ("{0} = {1} * {2}", kPosint, iPoslnt,
jPosint));
i Posint = -1, /1 Throws exception
}
Cut put :
-1651507200 = 2000000000 * 2000000000

20000 = 100 * 200
A first chance exception of type 'System Overfl owException' occurred

Conclusion

Software quality is a combination of perceived quality based on the likelihood of a customer
encountering a defect and security defects, which are maliciously sought. You can't test a significant
percentage of the functionality of a software product, so processes based on that assumption can
give a deceptive sense of quality.

The process of software development consists of a multitude of transformations from the original
vision into the final product. Many of the steps in this process have manual artifacts that can't be
automatically verified; software development depends a lot on human verification processes
(reviews). Because any human process includes a possibility of error, verification must be against
something—another translation.

Each transformation is also into a different language of description. The first few are typically
written documents, but finally code and tests are written. The step of writing code often loses a lot
of information because some concepts can't be completely expressed in code or a definitional
concept is turned into a referential concept as a result of limitations of the language.

Chapter 5. Using Productivity Games to Prevent Defects

In every job that must be done, there is an element of fun. You find the fun and—SNAP—the job's a
game!

—NMary Poppins

Most people think of games as a leisure activity and not part of their daily work. Merriam-Webster
defines game as an activity engaged in for diversion or amusement.!™! In the case of defect
prevention, you are trying to engage people for diversion—to divert or distract them from their day-
to-day tasks and encourage them to exert some effort on preventing defects.

[Merriam-Webster Online, "Game," http://m-w.com/dictionary/game.

Plenty of books and resources on game design are available. This chapter does not cover game
design in detail but shows how and why competition is a good technique to use to encourage defect
prevention effort. Most organizations do not use games and competition in the workplace as
motivational techniques, which is unfortunate because they can be incredibly effective ways to get
people to do things. Consider Frederick Winslow Taylor and his "one best way" in the famous
Principles of Scientific Management. Taylor put a lot of work into studying workers and work
processes to find the optimal output rate, and then analyzing behavior to move the median
productivity rate toward the optimal rate. It's interesting to ponder if using games or competitions
may have been a more effective approach to motivating workers. See the sidebar titled "Using the
carrot, not the stick," which follows.

Using the carrot, not the stick

"This man we will call Schmidt. The task before us, then, narrowed itself down to getting
Schmidt to handle 47 tons of pig iron per day and making him glad to do it. This was
done as follows. Schmidt was called out from among the gang of pig-iron handlers and
talked to somewhat in this way:

"...Well, if you are a high-priced man, you will do exactly as this man tells you tomorrow,
from morning till night. When he tells you to pick up a pig and walk, you pick it up and
you walk, and when he tells you to sit down and rest, you sit down. You do that right
straight through the day. And what's more, no back talk. Now a high-priced man does
just what he's told to do, and no back talk. Do you understand that? When this man tells
you to walk, you walk; when he tells you to sit down, you sit down, and you don't talk
back at him. Now you come on to work here tomorrow morning and I'll know before night
whether you are really a high-priced man or not."™

Now, if Schmidt were presented with a "pig iron per day" game to play, he may have
been as productive, perhaps even more so, without the "rather rough talk," as Taylor
labels it. The question for this chapter is whether a "high score" may have challenged
Schmidt and his cohorts to "beat the high score” and made them even more productive.
Would the "second class workman" (Taylor's term) be motivated enough to show up the
"first class workman" in a competition that he could handle 50 tons of pig iron instead of
477 Would Schmidt be glad to do it because he won that day's competition? Use the
carrot, not the stick.

[Frederick W. Taylor, The Principles of Scientific Management (New York: Harper and Brothers
Publishers, 1911).

What Is Game Theory?

Game theory is a branch of applied mathematics and economics that studies situations where
players choose different actions in an attempt to maximize their returns. John von Neumann was
the first to expand on early mathematical analysis of probability and chance into game theory in the
1920's. His work was used by the military during World War 11, and then later by the RAND
Corporation to explore nuclear strategy. In the 1950s, John Nash, popularized in the film A Beautiful
Mind, was an early contributor to game theory. His "Nash Equilibrium," which helps to evaluate
player strategies in non-cooperative games. Game theory is now used in many diverse academic
fields, ranging from biology and psychology to sociology and philosophy.[

2 wikipedia, "Game Theory," http://en.wikipedia.org/wiki/Game_theory.

Game theory outlines how and why people play games. Games have players, rules, strategies,
outcomes, and a reward. Games are things people do, following a set of rules, developing strategies
to create a certain outcome to receive a reward or prize. The players in the game must make
certain "moves" to determine their reward. The players must follow certain rules while making these
moves. Each player is supposed to behave rationally, which means trying to maximize personal
reward, regardless of what the other players are doing. They are trying to "win." Each player
pursues a set of moves, within the rules, to maximize his or her reward. See the following sidebar
titled "Prisoner's Dilemma" for a discussion of how this classic dilemma can illuminate aspects of
player strategies and motivation.

Prisoner's Dilemma

The creation of the Prisoner's Dilemma is attributed to Merrill Flood and Melvin Dresher,
who described it in their investigations of game theory as a nuclear strategy at RAND in
1950. The Prisoner's Dilemma is about two criminal suspects, questioned separately
about a crime. If one suspect testifies against the other, and the other is silent, the silent
suspect gets the full sentence, while the testifier goes free. If both are silent, both get
minor but nonzero sentences. If both testify, they get partial—more than minor—less-
than-full sentences. Each suspect must choose whether to testify or remain silent.
However, neither suspect knows what the other will do. The dilemma arises when you
assume that the suspects care only about themselves and do not know what the other will
do—and yet the outcome for each depends on the choice of the other.

Much has been written on the Prisoner's Dilemma and its role in game theory. Since the
use of games can have a dramatic impact on defect prevention efforts, it is useful to
consider some of these fundamentals of game theory in the design of games to
understand player strategies and encourage participation in defect prevention activity.

Games in History

Games have been around for centuries. For example, the game of Go was played in ancient China in
500 B.C. and is for sale along most toy aisles and in game stores, as well as online. (See the Free
Go Programs Web site at www.gnu.org/software/gnugo/free_go_software.html.) The royal game of
Ur was played in the fourth century B.C. You can play it online today on the British Museum Web
site at
www.thebritishmuseum.ac.uk/explore/families_and_children/online_tours/games/the_royal_game__
of _ur.aspx. Evidence even seems to indicate that games were used to motivate workers to build the
pyramids of Egypt. (See the sidebar titled "Productivity Games Helped Build the Pyramids," which
follows.)

Productivity games helped build the pyramids

One of the greatest testimonies to work and productivity is the ancient pyramids. There
are many theories on how these great structures were built—everything from slave labor
to aliens. What motivated the workers to accomplish these tremendous feats of
engineering?

The Great Pyramid of Giza is the largest of the pyramids and has approximately 2.3
million stone blocks, weighing an average of 2.3 metric tons each. The estimate is that
35,000 workers built this great structure. Originally, the theory was that slave labor was
used for construction, but archaeologists now think the building of the pyramids was
accomplished predominantly as a volunteer effort—farmers, masons, carpenters, and
metalworkers all contributing for the sake of national pride.

Most of the pyramids in Egypt each took decades to build. Former President Jimmy Carter
once quipped, "I'm surprised that a government organization could do it that quickly." So
the relevant question is, How did the workers stay motivated to complete the projects?
Were productivity games used?

The answer is yes. (Otherwise, we wouldn't have included this example here!)

Workers were organized into teams, or phyles (tribes)—"Friends of Khufu" and
"Drunkards of Menkaure," left and right, green and red, and so on. The evidence seems
to indicate that these teams competed with one another to improve productivity. For
example, stones were tagged with color to indicate the team that placed them.™

Phyles were subdivided into divisions. And divisions were identified by names represented
by single hieroglyphs with meanings like endurance, perfection, strong (see Figure 5-1).
So how do we know this? When you visit the pyramids, you come to a block of stone in
the relieving chambers above the Great Pyramid. First, you see the cartouche of a king
and then some scrawls in red paint—the gang's name—after it. In the Old Kingdom in the
time of the Pyramids of Giza, the gangs were named after kings. So, for example, you
may have a name, compounded with the name of Menkaure (a pharaoh), and it seems to
translate as "the drunks or the drunkards of Menkaure."

Figure 5-1. The pyramid builders' teams
[View full size image]

Crew
about 2000 laborers

South
side of
temple

Marth
sice of
temple

Friends of Drunkards of
Menkaure Gang Menkaure Gang
[| |] [| |]
Great Asiatic Green Little Perfect, Great Asiatic Green Little Parfect,
ar or Lowest o ar Lowest
Frash Small or Last Frash Small or Last
Phyles—about 200 laborers in each Phyles—about 200 laborers in each

It gets even more intriguing. In certain monuments, you can find the name of one gang
on one side of the monument and the name of another gang, we assume a competing
gang, on the other side of the monument. It's as though these gangs were pitted against
each other. From this evidence, we can deduce that a labor force was assigned to
respective crew gang phyles and divisions.

™ virginia Morell, "The Pyramid Builders,"
www7.nationalgeographic.com/ngm/data/2001/11/01/htmli/ft_20011101.5.fulltext.html.

@ PBS Online, Nova Online Adventures, "Who Built the Pyramids?"
www.pbs.org/wgbh/nova/pyramid/explore/builders.html; Alan Winston, "The Labors of Pyramid
Building," www.touregypt.net/featurestories/pyramidworkforce.htm; Joyce Tyldesley, "The Private
Lives of the Pyramid-Builders," Bbc.co.uk Web site,
www.bbc.co.uk/history/ancient/egyptians/pyramid_builders_07.shtml.

The Gamer Generation

Although the current generation of electronic games has its roots in the 1950s and 1960s, with
Spacewar and PONG, computer and game console developments over the last few decades have
taken gaming to a new level. Perhaps it is unfair to attribute the start of a generation to a single
game, but in 1981, Nintendo published Donkey Kong, which really was a defining moment in
mainstream gaming. The popularity of video games far exceeds that of other historical game types.
According to the Entertainment Software Association (ESA), the sales of gaming units alone have
grown from 2.6 million units in 1996 to 228 million in 2005.™*! Contrast those figures with the game
of Monopoly, which has sold more than 200 million units in its 65-year history.?!

W Entertainment Software Association, "Facts and Research: Sales and Genre Data,”
http://theesa.com/facts/sales_genre_data.php.

2 Hasbro, "History," www.hasbro.com/monopoly/default.cfm?page=history.

The point of this very brief overview of the history of electronic games is to emphasize the fact that
the workforce today is composed of people who have grown up in a world of video games. The ESA
says that the average gamer is a person who is 33 years old and has been playing for 12 years.!
For example, any recent college computer science graduate employed in software development
grew up playing video games. The rise in popularity of fantasy sports games, tribal casinos,
televised poker, and gaming consoles (Xbox, PS3, and Wii) is no coincidence. This is a generation
that thrives on games and competition.

¥ Entertainment Software Association, "Facts and Research: Game Player Data,"
http://theesa.com/facts/gamer_data.php.

What does that mean for defect prevention?

It comes down to "know your customer." In their book The Kids Are Alright, John Beck and Mitchell
Wade enumerate the basic principles that video games have taught this generation:™

M john C. Beck and Mitchell Wade, The Kids Are Alright: How the Gamer Generation Is Changing the
Workplace (Cambridge, MA: Harvard Business School Press, 2006), 43.

e If you get there first, you win.

e There is a limited set of tools, and it is certain that some combination will work. If you
choose the right combination, the game will reward you.
Trial and error is the best strategy and the fastest way to learn.
Elders and their received wisdom can't help; they don't understand even the basics of this
new world.

e You will confront surprises and difficulties that you are not prepared for. But the sum of
those risks and dangers, by definition, cannot make the quest foolish.

e Once you collect the right "objects" (business plan, prototype, customers, maybe even
profits), you'll get an infusion of gold to tide you over.

e Although there may be momentary setbacks, overall the trend will be up.

It is important to pay attention to these principles when designing games to motivate the workforce
to invest time in defect prevention activities. The people closest to the work—the individual
developers working with the code—know the most about defects. Because they are so familiar with
the defects, they have the knowledge of how to prevent defects. Typically, the majority of the
individual coders are recent college graduates or those newer to the workforce. Coincidentally,
these same people grew up with video games as a significant part of their daily environment and
were taught the preceding basic principles through their heavy interaction with video games. The
result is that they identify with and will respond to the idea of using games in their work activities.

Why Games Change Behavior

Games are compelling. Human nature has always responded to competition. Darwin's theory of
natural selection touches on the need for members of a species to compete with one another for
food or living space or some limited resource to survive. It is well within human nature for people to
compete with one another, so creating a contest to drive behavioral change targets survival
instincts that are core to everyone. As Darwin says,

The struggle will generally be more severe between them [members of a species], if they come into
competition with each other.

—Microsoft Encarta, 2007.

NCAA Tournament Games

Every year, March Madness descends when the National Collegiate Athletic Association (NCAA) hosts
a basketball tournament for men's and women's teams. Sixty five college basketball teams are
seeded and compete against one another until one team wins the tournament. Many spectators set
up brackets that list the teams competing and try to predict which teams will win their matchups
and move forward in the tournament to the final competition. Often, employees in companies host
office pools in which they compete against one another to see who can predict the basketball team
winners most accurately. The NCAA tournament is usually preceded by a host of news articles on
the loss of employee productivity brought on by office betting pools.

According to many articles, the cost of lost productivity is more than a billion dollars. Several
articles suggest that employers suffer the losses and are happy with the "morale benefits," saying
that office pools build camaraderie and foster closer relationships between staff members.

Perhaps the answer is to integrate work tasks into the pool. According to one survey, employees
spend more than 13 minutes a day during the tournament checking basketball scores. Why not put
this out in the open and attach "real work" to the pool? For example, an insurance company can
hold a contest to allow claims processors to fill out one bracket per 10 claim forms processed. Or
highway patrol officers can get a Final Four pick for every five speeding tickets they write—just
kidding!

The point of productivity games is to align the game with the goals of the organization, and if
people are spending their work time checking NCAA results, companies should integrate that
behavior into the task at hand.

Types of Games

Game theory offers a categorization of types of games that is helpful in designing productivity
games for defect prevention. As management or the "game designers" think about how to use
games to encourage defect prevention activity, an understanding of the different types of games is
tremendously helpful in making the games more fun and more effective at attracting players to
defect prevention work.

Following is a general categorization of the types of games that exist:

e Noncooperative Players work independently without concern for the other players. These
are typically the best type of games for work-related competitions.

e Cooperative Players may cooperate with one another. This can lead to tricky issues when
used as a motivator for defect prevention activity.

e Zero Sum The sum of all rewards for all players is zero. Zero-sum games are not
recommended for defect prevention competition because people can do work, perform
tasks, and lose ground.

e Constant Sum The sum of all rewards for all players is constant. However, a variable
reward is a more exciting and motivational incentive for defect prevention work.

e Aligned Games Productivity games that are played to help achieve the goals of the task at
hand are called aligned games. For example, a janitor may see how many garbage cans can
be emptied in an hour. NCAA tournament picks that are awarded as a result of doing a task
in line with company goals can be considered aligned games.

e Incidental Games Incidental games are played during the course of work and do not
contribute or directly affect the outcome or accomplishment of the task. Incidental games
probably will help improve morale, will keep people from straying too far off task, and may
foster community. However, they do not directly relate to the goals of the job. An example
might be a hotel maid who lines up pillows in certain patterns from room to room, or a
truck driver who waves to Volvo wagons for the fun of it. These incidental games keep
people thinking and keep their minds working but do not necessarily improve output. NCAA
tournament watching—as it is done today—is a great example of an incidental game.

Games of Chance vs. Games of Skill

Games and competition used for defect prevention work can be games of either chance or skill. The
nature of the scoring and reward mechanisms determines the type of game. If the rewards are
random, these competitions are considered games of chance. On the other hand, the competition
can, for example, be about finding the most buffer overrun bugs—making it a game of skill. It is
worth noting, however, that games of skill may tend to discourage competition unless the players
are all of roughly equal competence. If one or two players are far more skilled than the rest are,
they will stand out and the rest of the players may become discouraged. A game of chance gives
more players an opportunity to earn rewards, thereby encouraging participation.

Mini Games

One fascinating possibility of productivity games is to make the game take the place of the work.
There are many examples in the real world where mini games alter behavior or focus attention on a
specific issue. A simple example is the "days without an accident" sign posted at many construction
sites.

Two distinct categories of mini games can be created and played within the task: games that are
aligned with the goal of the task—call these challenges—and games that are not aligned—call these
incidental mini games. Here is an example to illustrate the difference between the two. The task is
to drive a truck from New York to Seattle. The goal is to travel coast to coast in the least amount of
time. An aligned challenge can be created in which points are awarded to the driver whenever the
second hand on a watch passes the 12 at exactly the same time that the truck passes the physical
milepost, assuming the driver follows the legal speed limit, road conditions are favorable, and so
forth. The score is increased for each successful "hit"; that is, for each time the second hand clicks
to 12 at the exact milepost location. This game is aligned with the overall goal of driving to Seattle,
and "winning" this game contributes positively to the goal of driving to Seattle. Most video games
include mini games that are aligned with the overall goal of the game—players can get new tools or
weapons, build strength, and so forth.

An unaligned, or incidental, mini game in the truck driving scenario may a point awarded every time
the driver honks the horn at a silver SUV. The scoring for the incidental game does not contribute
positively to the overall goal of driving to Seattle. There is a third, rarely occurring type, where
winning the mini game penalizes the player in progress toward the overall goal. For a truck driver,
this adverse game may be to get off the highway at every even-numbered exit, turn around, and
get back on. Winning this game is detrimental to the goal of driving to Seattle in the least amount
of time.

During the design of mini games, be sure to consider existing work and the repercussions of
overlaying a game on work that's already being done. For example, if one person is employed full
time to find defects in the code, starting a game to encourage others to do that work may have an
adverse effect on that person. Simply starting a game to score others on the "regular" work of
another is not a good idea. Perhaps involving that person in the design of the game, with a careful
explanation and understanding of the goals, will help, but even those efforts may not overcome the
negative implications of inviting, encouraging, or rewarding others for doing his or her job.

Prediction Markets

A prediction market is a type of betting, where the payoff is based on the outcome of some future
event. In software development, prediction markets built around product release dates are one of
the more common uses of the genre. Prediction markets can be established around defect
prevention techniques as well, and they can provide a useful alternative to common productivity
games. Again, the design and reward structure are imperative for prediction markets, so as to
discourage people from doing the wrong type of work in order to win the game.

More information on prediction markets:

e Prediction Markets: Wolfers and Zitzewitz - Journal of Economic Perspectives—Volume 18,
Number 2—Spring 2004—Pages 107—-126

Hollywood Stock Exchange - http://www.hsx.com/
http://www.ideosphere.com/
e http://en.wikipedia.org/wiki/Prediction_market

Alternate Reality Games

An alternate reality game is a storyline that weaves real-life elements into the game. These "games"
involve creative writing, role playing, and puzzle solving around a common story. Alternate reality
games can be extremely useful in tying together various other productivity games for defect
prevention work. As with other types of games, significant effort must be put into the design and
the rewards to ensure that the right behavior is reinforced. The design of an alternate reality game
is significantly different from a simple productivity game, but the storyline can sit on top to help
connect various productivity games around a common theme.

For more information on alternate reality games, see

e http://www.argn.com
e http://www.unfiction.com

Practical Guide to Defect Prevention Games

There are some simple steps you can follow to create games for defect prevention. The goal is to
take advantage of the natural attraction of games and competition and use it to encourage people
to invest time and effort in defect prevention activities.

Start with a Leader Board

The easiest way to create a competition is to start to keep score. As Peter Drucker says, "What gets
measured gets done," and this applies directly to the use of games and competition to encourage
investment in defect prevention. As soon as you start keeping score, people sit up and take notice.
If, for example, the project could benefit from a higher defect discovery rate, posting a running total
number of defects discovered by each developer will compel people to compete to increase their
score. However, as soon as you start to keep score, people will start to optimize their behavior for a
higher score—to "game" the system—that is, the player may enter artificial or dubious defect
discovery reports just to win the game. A well-designed game does not have this problem, but if
there are holes in the scoring mechanism, it can cause huge problems.

Keep It Simple

It is easy to overthink a game. The game should be simple enough that people can play easily and
score points. Simple games attract players. People tend to overanalyze and overdesign the games

at the cost of results. A simple game is easy to administer and can get people playing immediately.
There is always time to refine it as you go.

Think Through Scoring

People will quickly find any holes or improprieties in the scoring system. The famous Dilbert
response to a "bug bounty"—a competition to find the most bugs—illustrates this point exactly by
leading to completely unexpected results. It is critical to think through the scoring and rewards to
make sure they drive the right behavior. Scoring system design is a skill that improves with
practice. The best way to find and fix scoring problems is by using a small pilot program. People are
creative and will find holes immediately.

DILBERT: © Scott Adams/Dist. By United Feature Syndicate, Inc.

[View full size image]

OUR GOAL T35 TO WHITE 1 HOPE T GOMNA
BUGFREE SOFTLIARE . % E.\“@ gl THLS LIRITE ME A
TLL PAY A TEM-DOLLAR DRIVES MEL) MINIVAN
BOMUS FOR EVERY BUG . THE RIGHT THIS AFTER-

YO0 FIND AMD FLA,

BEHANIOR. mOOML

||

After participants hear the game rules, spend some time with them to understand their playing
strategies; this can help flush out any scoring inconsistencies. Scoring is not something to take
lightly—the success of the game depends on an equitable scoring system. Even the best intentions
can end up being misconstrued.

Feltans Bomail BEOTTABANARADL COM
—
—
¥ é'ﬂ
X
£
it
J &S United Featers Syrdicaie. Inz. (NYE)

=

Reward the Right Behavior

A game will entice people to do things. The design of the scoring system and rules of the game can
encourage people to change what they do. The rewards for the game should go to those who
perform the intended actions. This may sound simple and obvious, but many times, subtle nuances
of the scoring system are missed until it is too late.

For example, an initial goal may be set to find bugs. A team can host a "bug bash" for an evening
and give a prize to the person who finds the most bugs during the event. However, reviewing those
bugs a week later may reveal that the winner actually entered a high number of duplicate,
insignificant, or invalid bugs and didn't do quite as well as it looked when prizes were distributed. In
the design of the scoring system, it is important to consider the game's goals and the desired
behavior necessary to achieve those goals. The goal may not be to find a sheer number of bugs, but
to find high-quality bugs or bugs that must be fixed. Be as clear as possible on the exact behavior
change desired when designing the scoring and rewards.

Use Scoring to Encourage Participation

This is another reminder to consider the goals of the game carefully. If the goal is to get the entire
team to perform an activity, the scoring system should account for the fact that one or two people
may jump way ahead, or people may prioritize the activity differently and fall way behind. An
example is a "consecutive days" reward when scoring is based on consecutive days of performing
the desired activity. If a team member is out of the office for the first three days of the competition,
he or she can never catch up and therefore likely will not participate for the rest of the game. In
such cases, the scoring system should allow people to catch up or offer alternative ways to
compete.

Design the scoring to encourage, not discourage, participation. Perhaps there are bonus points to
earn or alternative activities that people can do to get themselves "back in the game." Also,
consider leaders: If one person works hard to get a big lead and that person's effort results in a big
gain for the project, he or she should be acknowledged and rewarded for the effort, not discouraged
by being penalized and brought back to the pack through rule changes and bonus point distribution.

Using scoring to encourage participation is harder than it looks.

Keep the Players Coming Back to Check Their Score

A good game keeps the players' attention. The idea is to encourage players to monitor and improve
their scores. If the players are regularly checking their scores, it is more likely they are trying to
improve their scores and performing the tasks that earn them rewards. Anything that the game
designers can do to bring people back to the game helps maintain interest and keeps people
playing. Following are some activities people do when they are engaged by a game:

Check scores

Read about winners

Look up friends' and co-workers' scores
Learn about new games

Challenge others to one-off competitions

All these behaviors keep the interest alive and get people thinking about performing the tasks to
earn a place in the game.

You'd Be Surprised at What People Will Compete For

As mentioned, people are naturally competitive. From birth, we are taught to compete for survival—
for food, attention; competition is a natural part of life. Implementing a simple game to perform an
action and receive a point can result in behavioral change. A competition to spell a word or click a
button will attract participants. At first, you may tend to think big, elaborate games are necessary,
but simple competitions are a great way to start. Model some of the games after popular "analog"
games, such as card games or board games. Games like Chinese Checkers, Othello, Scrabble,
Hangman, and popular board games are all based on very simple concepts.

Allow Room for Adjustment—Set a Time Frame

A game or competition will be more successful, especially at first, if it exists for a set length of time.
If the scores are tallied daily or weekly, adjustments can be made periodically to fine-tune the
competition. When starting a game, schedule an update in a short amount of time to allow for
adjustments. If it is impossible to shorten the length of the competition—for example, the game
follows the football season—host a pilot version prior to the start of the game period so that you can
make any scoring adjustments before deployment.

Stratify to Maintain Interest

In most games, there will be serious or hardcore players and casual players. The existence and
participation of hardcore players should not discourage casual players. The scoring system should
accommodate and motivate both types of players to compete, even if they are not competing with
each other.

Retain a Player's History

As games evolve or new games begin, try to avoid starting over. Players have earned some value
and prestige, and it is useful to retain these attributes. Players who finish second or third, for
instance, might lose interest if they are forced to start over from zero in a new game. However, a
player who finishes last wants a fresh start, so analyze the playing field and develop the scoring and
historical retention policies accordingly.

Start with a Small Pilot

By using a pilot program, the product team can monitor participation more closely. A pilot provides
the opportunity to monitor the game play and keep track of scoring rewards. With a pilot, the
product team can interview players and get a full understanding of how the game will be played and
how the players perceive the rules and rewards.

Let People Play at Their Own Pace

People work at different rates—some are slow and steady, and some work in bursts. The game
should allow players to participate at their own pace. Scoring and participation should reflect the
need for people to play at a rate that is comfortable for them.

Augment Interest by Using Cash and Prizes

To sustain interest, add cash and prize rewards. It's probably best not to do this at the start, but
add them as the contest continues to keep interest levels high.

Use Random Drawings

When determining prizes, random drawings are sometimes a more effective way to distribute
rewards. Sometimes leaders are so far ahead of the others that the rest of the pack loses interest.
In this case, a random drawing can help to keep interest in the game while you are still
acknowledging the leaders.

Examples of Using Games for Defect Prevention

During the development of the Windows Vista operating system, the Microsoft product team
developed and hosted a number of different games to drive productivity. The size of the project and
corresponding length of the development cycle led to a repetitive set of activities, and as the team
entered the beta phases, the use of games was successful in injecting new energy into the
development effort. In some cases, there were productivity gains of as much as 300 percent using
competition as a basis for encouraging task completion. As shown in Figure 5-2, the beta 1 game
asked team members to perform various tasks to "earn a letter" and spell betal.

Figure 5-2. Windows Vista beta 1 game

[View full size image]

See if you can spell...

Vista Internal Beta 1 Game

Install vista, vote on quality Complete challenges to eam letters that spell beta 1

- Install & beta 1 build

- Wote on a beta 1 build

- Run ovemight

- Install 3 consecutive beta 1 builds
= Run overnight 3 times

check out the Leaderboard and the list of current betal Winners
Mew! Check out the Betal Game FAQ

= o= O O

The beta 2 game (Figure 5-3) expanded on the concept and awarded points for test activity. There
were multiple levels of prizes and random drawings, and players could earn wristbands based on
participation. In some cases, the wristband became a symbol at meetings and in hallways that
spurred competition.

Figure 5-3. Windows Vista beta 2 game

[View full size image]

o .
& ! 4 Windows Vista Test Game Install Windows Vista Be-t.'.l_ 2, try some things. run seme
B g tests, and earn colored writsbands!

£

i [.

| This Weel's Leaders — _ Install Beta2
sadke Drvsd ezh s s aien 70 {7k re- Bia Bgmarin Af B PRBRD. et ol
1 dan T I T 1 Mm% hra and follow the dersations =
3 ek MiE B @ 4 1 = | i Bt 00
] bob W T 1 8 1 FFELS
- rom s a8) L 1 L] ‘ '
5 ot W W 9 i apn & . & Runtests!
[P T TR] L 1 E thenc ! Shart namning &nd keep
R i S R o Vo' DLisrpmmesee o
] PHKE? i i - e}

¥ oenm mE W1 8 1 EE
B homer NTR N 1L 1 i L] Vour Game St A]
u s E B 1 1 1 b " " ——
T T 1 e r
L B e e : i RN I 127 = %% beoeas
1 [Vhall ™ & @ i Wiy e UL 1550 un 12I% e

These games culminated in a release game that was distributed company-wide. Prizes were based
on random drawings for those who completed installation and certain test activities. Once again, the
results were phenomenal, with the majority of the company participating in the final days of testing
Windows Vista.

Tips on Game Design

It is easy to spot the similarities in simple games that work well. Noncooperative games, where
each player is responsible for his or her own scoring, usually work best.

Simple leader board—do something, earn a point

Spell a word or phrase—earn letters

Hangman—earn a guess

Pick a number—earn a guess

Guess a word—earn a letter guess

Graffiti—earn letters to spell a phrase

Guess the mystery celebrity (or mystery whatever)—earn clues to guess
Scavenger hunt

Clue

Game Design Checklist
Any productivity game should accomplish the following:

Get players to be more productive (and have data to prove it)
Be easy for people to play and compete

Have well-thought-out rules and scoring

Be competitive and/or fun

Keep players engaged and looking at their scores
Keep a history of player activity

Let players play at their own pace

Let players compete against themselves

Be tested with a small group first

Evolve and be refined over time

Be careful with games that overlap existing work.

A great resource on the use of games for productivity and to change behavior is the Serious Games
Initiative (www.seriousgames.org). This organization helps to connect game designers and
organizations using games for health care, social change, education, and productivity.

Conclusion

Productivity games are an effective way to encourage investment in defect prevention techniques.
Games can attract interested players and motivate people to make investments in prevention
activities on their own. There have been many scientific studies around the use of games in various
situations. Game theory, pioneered in the 1920s by John von Neumann, is a useful foundation to aid
in the design of productivity games. There are a wide variety of games that can be applied to help
change people's behavior. In the daily regimen of the software development cycle, there's usually
very little thought about the "big picture"” and preventing defects. The focus is on the immediate
problems, and simple competition and games can add some fun and excitement to defect
prevention work. The success of the game in improving productivity is dependent on game and
reward design. There are several key factors that can make or break the use of games as a
successful defect prevention technique. Games can be simple or elaborate but must consider the
behavioral impact on the players—games should encourage the desired effort. Reward design is
critical to a successful program. Smaller rewards and smaller game programs are usually better
because they provide an opportunity for frequent design and reward adjustments. Productivity
games provide a tremendous opportunity to attract effort toward defect prevention in a fun and
exciting way.

Suggested Reading
GameTheory.net. Home page. www.gametheory.net.

IEEE Computer Society Task Force on Game Technologies (TFGT). "IEEE-CS Task Force on Game
Technology: Publications." www.ucalgary.ca/~jparker/TFGT/publications.html.

"Kids Games." www.gameskidsplay.net/.

Marks, Robert. "Strategic Game Theory for Managers."
www.agsm.edu.au/~bobm/teaching/SGTM.html.

Serious Games Initiative. Home page. www.seriousgames.org.
"Game Theory: Types of Games," http://library.thinkquest.org/26408/math/gametypes.shtml.
ThinkQuest. "Game Theory: An Example game." library.thinkquest.org/26408/math/prisoner.shtml.

Walpole, Stuart. "Designing Games for the Wage Slave." GameDev.net.
www.gamedev.net/reference/articles/article2121.asp.

Chapter 6. Improving the Testability of Software

A fundamental part of defect prevention is to discover defects as efficiently as possible even after
they are introduced into software. Architecting, designing, and implementing software that is
relatively easy to test increase the efficiency of the testing process and make defects more
discoverable. Testability is the degree to which components and systems are designed and
implemented for test automation to achieve complete code path coverage and simulate all usage
situations in a cost-efficient manner. This chapter introduces the Simplicity, Observability, Control,
and Knowledge (SOCK) model of testability and provides practical guidelines for improving
testability.

Realizing the Benefits of Testability

Testing can be one of the most expensive parts of the product life cycle. Anything that can be done
to reduce the cost of testing is obviously a huge benefit. Architecting and designing testability into a
product from the start go a long way toward reducing the cost of testing and making maintenance
of the software easier (that is, more cost effective).

Software that is highly testable also tends to be well designed. In the Net Objectives Design
Patterns™ curriculum based on the book Design Patterns Explained: A New Perspective on Object-
Oriented Design,!? by Alan Shalloway and James R. Trott, the authors state that there is an
important link between testability and good design: "Easy testability is tightly correlated to loose
coupling and strong cohesion [two main pillars of good design]."” In the context of unit testing, they
also assert the following:

[¥ Net Objectives, "Design Patterns Training,"
www.netobjectives.com/courses/c_design_patterns.htm.

@ Alan Shalloway and James Trott, Design Patterns Explained: A New Perspective on Object-
Oriented Design, 2nd ed. (Boston: Addison-Wesley Professional, 2004).

Code that is difficult to unit test is often:

e Tightly coupled: "I cannot test this without instantiating half the system."
e Weakly cohesive: "This class does so much, the test will be enormous and complex!"
e Redundant: "I'll have to test this in multiple places to ensure that it works everywhere."

By keeping testability in mind during the architecture, design, and implementation phases, software
becomes better designed and more easily diagnosed when problems arise, which can lead to lower
maintenance costs.

The same methods used to make the software more testable can also be used to make the software
more manageable, for example, making it easier to control remotely or to script common actions or
detect and centrally report bad behavior or significant events. The same tenets of testability also
provide the foundation for self-healing software: Software that has the ability to observe its own
state, know if the state is operationally valid, and if not, take an action to return the software to a
correct state or at the very least report on the observed operational failure.

Testability doesn't come free, but a good balance of testability features can reduce the overall cost
of developing, supporting, and servicing the software. Early thinking about "how are we going to
test this?" starts the discussion on testability features, which in turn leads to good design and allows
for efficient creation of test automation that fully exercises the software under test. The same
testability features can also be used to improve the diagnosability, manageability, and supportability
of the software, which then continue to benefit the software throughout its support and servicing
lifetime.

Implementing Testability

Testability is tied to test automation and its ability to programmatically verify whether software is
working the way it should and whether the actions of the software under test are having the
expected effect on the system on which it is running. In their 1992 paper How to Automate
Testing—the Big Picture,™ Keith Stobie and Mark Bergman describe effective test automation in
terms of the acronym SEARCH: Setup, Execution, Analysis, Reporting, Cleanup, and Help. Every
automated test must include each of these elements to be a true and effective test. Setup is the
effort it takes to bring the software up to the point where the actual test operation is ready to be
executed. Execution of the test is then followed by an analysis of whether the software did what it
was supposed to do and didn't have any unintended side effects on the system as a whole.
Reporting the results of the analysis is then followed by a cleanup phase that returns the software
to a known state so that the next test can proceed. For the test to be runnable and maintainable by
more than just the person who wrote it, a decent help system should be in place as well to describe
the three basics of test documentation: How to set up the tests, how to run the tests, and how to
interpret the results.

W http://www.keithstobie.net/Documents/TestAuto_The_BigPict.PDF

The goal of creating more testable software is to help facilitate effective test automation by making
it easier to set up, execute, analyze, clean up, and provide straightforward help for the tests.
Software can be designed from the start to allow for efficient test automation. The key tenets of
testability described by Microsoft Test Architect David Catlett are Simplicity, Observability, Control,
and Knowledge of expected results, or SOCK.

Simplicity: Creating Noncomplex Software

Obviously, the more complex software is, the harder it is to test. Software that has a large number
of interrelated or stateful operations is inherently more difficult to test than are systems that have
only a handful of tasks with a limited number of options.

Adhering to the basic pillars of good design of high cohesion, loose coupling, and low redundancy is
a great way to decrease complexity, which in turn increases testability. For example, software that
is designed with high cohesion—meaning each method or function in the software accomplishes one
and only one task—simplifies the test matrix. Not having to go through a complicated series of
operations using a specific set of parameters just to get the software to the point where the test can
actually be executed is a huge testability win.

Similarly, methods that have a minimal amount of coupling, or a low number of dependencies, are
much easier to test. For example, using something like a SQL database instead of a simple text file
for configuration storage causes the testing to be much more complicated. Reading and writing
information over the network increase the possibility of encountering errors, and learning how to set
up and maintain a computer running Microsoft SQL Server can greatly increase the complexity of
the test matrix as well as the cost of testing. Testing code in only one place instead of having
redundant code that must be tested in many places also simplifies testing.

Simplifying the software design to reduce the test matrix and reduce the time it takes to set up and
clean up the tests is a big win for testability. For example, if the only way to clean up the test pass
is to restart the computer, testing will become very expensive in terms of time. One way to reduce
the cost of setup to improve testability is something that many people probably take for granted:
The TCP/IP loopback functionality present in operating systems such as Microsoft Windows. Setting
up a client and server on the same computer and being able to exercise a majority of the code
paths using this simple one-computer configuration goes a long way toward making network
applications more testable. Anything that can be done to simplify the process of getting the
computer into a certain state bodes well for testability. Another example of simplifying testing is the
capability of installing multiple configurations of the same software package on the same computer.

Componentization

Componentization, the ability to break up functionality into logical groups as separate libraries that
can easily be swapped out, is an important part of making software more testable. For example, a
contract developer working on the networking portion of a tax software package was required to
build the entire client package including his changes and install the entire client package before he
could test his changes. The process took 40 minutes. Not only that, there were three separate types
of software packages, and they could not be installed at the same time on the same computer. So,
to verify a single fix or feature addition, the developer had at minimum two hours of setup, not
including how long it took to remove the software and restart his test computer. Needless to say, he
admitted that most of the time when he made changes he tested only one client package instead of
all three.

If, however, the software had been componentized, the developer could have swapped in and out
the networking components he was working on without having to spend 40 minutes building and
reinstalling. Also, if the three client configurations could have all been installed on the same
computer, he could have easily tested all three configurations with only the cost of the initial setup.

The other important testability feature that componentization affords is the ability to insert test
components in place of the real components. This is sometimes called fault injection and is used to
make better use of mock objects, modules that can simulate usage and error conditions without
implementing the entire dependent infrastructure. Separating logical tasks into modules, such as
the networking library from the tax software, makes it easier to test these components separately,
which reduces the complexity of setting up the tests, which increases testability.

Using complexity metrics, one can also get a feeling for how testable software may be. Complexity
is also defined in terms of not only the specific methods or modules in the software under test but
also the system in which the software operates, its direct and indirect dependencies. The more
complex the software and the systems in which it interacts, the less testable. Stephen Kan in the
second edition of his book Metrics and Models in Software Quality Engineering!™! specifically
mentions the usefulness of complexity metrics "To estimate programming and service effort,
identify troublesome code, and estimate testing effort" (p. 318, emphasis added). Although there is
some debate about using specific metrics such as McCabe's Cyclomatic Complexity for estimating
test effort, most agree it is a good starting point for identifying the absolute minimum number of
test cases needed to completely cover a function or module. In practical terms, agreeing on a
threshold for complexity metrics that have been proven to be predictors of defects is important not
only in reducing the number of defects but also in maintaining the testability of software.

W Kan, Stephen H., Metrics and Models in Software Quality Engineering, 2nd ed. (Addison-Wesley,
2003).

Another way of reducing the complexity of software is by using established design patterns. With
the use of design patterns comes predictable and inherently more testable software. The canonical
example of a design pattern that greatly improves testability is the Model-View-Controller (MVC)
pattern of user interface (Ul) design. A Ul becomes more testable when the business logic is
separated from the Ul or the view of the model through a controller. This is because the business
logic can then be tested separately from the Ul, and if (and when) the Ul changes, the core
business logic tests will not have to change. For example, when the interaction with a database or
file system is intertwined in the Ul code itself, it makes it very difficult to automate validation of the
behavior of both the Ul and the business logic, and if (and when) the Ul ever changes, the tests
have to be completely rewritten.

Here's a simple example of how to make a Microsoft .NET console application written in C# more
testable. This application outputs a list of customers from a database.

static void Minl()

Sql Connection conn = new Sql Connecti on(Setti ngs. Sql Dat abaseConn) ;

conn. Open();

Sql Command conmand = new Sql Command(Setti ngs. Get Cust onmer sQuery,
conn);

Sql Dat aReader reader = conmand. Execut eReader () ;

whil e (reader. Read())

{
Consol e. WiteLine(reader. GetString(0));

reader. C ose();
conn. d ose();

This code seems simple enough until it comes time to automate the validation of the results. In
Windows, this would typically mean writing a complicated batch file to run the application, capture
the standard output, parse it, sort it, and compare it against some known list in a text file. Then,
when the customer decides they want a graphical user interface instead of a console interface, all
the tests have to be rewritten. Instead, if the developer had followed (at least loosely) the MVC
pattern, tests could be written to validate the data directly from the database along with separate
tests to validate the actual displaying of the data. In this case, by componentizing the interaction
with the database into a different library, the application becomes more testable. This also simplifies
the Mainl program quite a bit:

static void Min2()

{
ArrayLi st results = CustonerlList. GetCustoners();
foreach (String result in results)
{
Consol e. WiteLine(result);
}
}

The CustomerList.GetCustomers method is then in a separate library that the tester could call
directly to validate the results from the database. Then, even if the Ul changes, these tests are still
valid.

This type of design for testability also enables a key aspect of testing: fault injection. Fault injection
is the ability to force error conditions on software. The best candidates for fault injection are at the
boundaries of any external dependencies. In this example, it is the interaction with the SQL
database. We're sure many a programmer is cringing at both the Mainl and Main2 code because it
does not handle any error conditions. There are bugs aplenty waiting to be uncovered when this
poor defenseless application gets put into the real world. In Mainl, it would be very difficult to
induce error conditions to force the code to deal with the various exceptions that could be thrown by
the interaction with the SQL database. It would be relatively expensive to set up a testing
environment that forced, for example, a connection timeout or login failure or query timeout. In
Main2, it is much easier to force these conditions and ensure that the Ul code handles them
properly. The tester could easily replace the CustomerList library with his or her own fault injection
test library that returns every possible error condition the Ul should handle without needing to set
up a complicated test bed. Enabling fault injection is a key part of designing testable software, and
following the key design principle of loose coupling as well as using design patterns such as the
Model-View-Controller pattern help improve the design as well as the testability of software.

As discussed, testability is greatly improved by following good principles of design,
componentization, monitoring complexity, and using established design patterns such as the Model-
View-Controller pattern. After software is designed, other steps can be taken to improve testability
further.

Observability: Making Software Observable

During the analysis phase of a test, to determine whether a test passes or fails, the test automation
must be able to observe the results of the software under test and its effect on the system as a
whole. The ability to do this in a cost-efficient manner is the degree to which the software is
observable.

Observability is a very important part of testability because it allows for efficient and accurate test
automation. The more easily the automation can observe the test execution action, the more
accurately it can judge whether the test passes or fails. Sometimes the important information
required for accurately analyzing test results is not exposed to test automation. This is especially
true in cases where an action may result in more than one reaction that may or may not be valid
based on environmental variables or a particular configuration setting.

For example, a small business version of a server application may accept only 10 connections, but
an enterprise version may accept a thousand connections. If a test application tries making 11
connections, it will pass or fail depending on whether the small business or enterprise version of the
software is installed. Either the test suite could duplicate test connection code and check for the
boundary conditions for each server version, increasing the cost of setup, test automation, and
maintenance of the tests, or, if a method were implemented in the server software that simply
returned the version of the software, the test code could query that method and make pass/fail
decisions based on that observable piece of information. Separate test suites would not have to be
run on each version of the software because the test would be able to automatically adjust its
expectations of when a connection is refused based on querying the software under test for its
version.

Even better, if the queried method returns the threshold value, if the thresholds are changed later
(for example, say, the small business server version increases its acceptable client load to 20), the
tests do not have to be changed because they maintain themselves, keying off the threshold value
exposed by all versions of the server application. Additionally, if a new "medium-sized business"
version of the software that supported a maximum of 200 clients were released, the same tests
could be run against the new version with no modifications. In each of these cases, the test simply
scales up connections until receiving a connection refusal, queries to see whether the actual
connections match the threshold value returned by the software under test, and passes or fails the
test accordingly.

When test automation can query for threshold values, it makes the software more observable and
thus more testable. Other examples of making software more observable include the following:

e Understand any configuration option that changes the behavior of the software under test.
By making these configuration values programmatically observable, you eliminate the need
to hard-code values in the test code, which helps reduce maintenance of the test code,
especially when the software under test changes.

e Know timeout values or any "magic" number that influences the observed behavior of the
software. Knowing what these values are ahead of time and how they influence the
observed behavior is important during the analysis phase of a test. For example, a media-
streaming server may reduce or increase the quality of a video stream based on a heuristic
calculated from current networking conditions. To validate that the media-streaming server
algorithm is working as expected according to specification, the results of the heuristic
formula must be programmatically observable to the test software.

e Discern decision formulas. Knowing which path is taken after a branch statement (such as
an if or case statement) helps make the determination of pass/fail more accurate. For
example, the XPath query language parser has a "fast path" that is activated only if the
Extensible Markup Language (XML) the query is to be run against is in a particular format.
In a specific test, because the results from the XPath query were identical regardless of
whether the fast path was taken, to verify whether the code took this fast path on qualified
XML input, the test team had to look at an internal variable as well as the actual XPath
query results. Having programmatic access to that internal variable increased the
observability of the software.

e Examine internal resource usage to find memory and handle leaks. Beaconing when
memory is allocated and subsequently deallocated or when an external resource is used
and then disposed of can be an important test and diagnostic tool. In testing for memory
leaks, the software under test can simply beacon when memory or handles are allocated
and deallocated. Then the test software can validate these claims against the actual
observed memory usage recorded by the operating system and can determine whether
there are any resource leaks. This technique can be extended to any type of interaction
with a resource that should be freed after it has been used. For example, a temporary file
that is created should be deleted after it has been used, and a network connection should
be torn down after a transaction is completed. When software exposes its internal state to
test software in an easily observable manner, this increases the testability of the software.

e EXpose errors or warnings the software encounters as it goes through its operations. This
allows test software to have its own self-checking mechanism. For example, a test may
seem to pass (perhaps a method was called and it returns ERROR_SUCCESS, one of the
classic Windows error codes), but the method may have actually encountered some internal
problem, logged an error or warning somewhere else, and returned the wrong error code,
which is unfortunately very common. If there is some programmatic way of accessing the
error log file, such as through the Windows Event Log APls, the test will not be fooled by
the bogus ERROR_SUCCESS return code.

e Beacon major state changes in the software, for example, system initialization or shutdown,
establishment of a connection, or any other change a test automation program could
consume to understand the current state of the software.

e Observe what happens after the software completes a task. This is particularly crucial for
certain testing methods, such as Model-Based Testing, which relies on the ability of the test
harness to programmatically evaluate the state of the software under test and compare it
with the "model" state, or test oracle. The more observable the software is, the more
accurate the comparison between the model and the actual state can be, thus enabling a
very powerful test methodology. Even if Model-Based Testing is not used, it is very
important to have multiple data points that the test automation can use to make an
accurate and complete analysis of whether the software is behaving correctly. For more on
Model-Based Testing, see Practical Model-Based Testing: A Tools Approach!.

) Mark Utting and Bruno Legeard, Practical Model-Based Testing: A Tools Approach.
(Elsevier Science & Technology Books, 2006).

Control: Increasing Control over Software Under Test

A very important aspect of testability is the capability of efficiently and reliably exercising the
software under test through all usage situations. This is considered the main pillar of testability: Can
test code easily manipulate the software in a way that is more efficient than having a human sit
down and manually put the software through its paces? Increasing the control of both setup and
execution of a test is critically important in improving testability. The more controllable a
component, the more deterministic and predictable the behavior, which increases confidence in the
results of the analysis phase.

Similar to being able to observe thresholds and timeouts, it can be equally important to control
configurable options at run time. When a configuration option for an application can be
programmatically changed and does not require a system restart, testing can realize a huge
efficiency gain. Another important aspect of control is the ability to control external factors that
cause the system to behave differently. The best technique for controlling external factors is to wrap
any external calls, such as system calls, which allows the calls to be overridden by test modules,
sometimes called fault injection. Controlling external factors helps increase determinism in testing a
specific scenario. For example, it is much less expensive to wrap a file system Write call and
simulate a Disk Full error than it is to actually try and fill up the disk and force the system to cough
up a Disk Full error.

Testing Windows Vista

In the Windows Vista operating system, one of the biggest test matrices was in the
upgrade and migration engine. Here's what one of the test developers said about how the
team made the migration engine more controllable:

One thing we did was in the migration engine add a "system abstraction layer" that all
migration engine calls must go through to touch the actual machine. With this support, it
becomes really easy to do smart fault injection, unit test the engine, and create a harness
for system simulation. The system simulation step allows us to simulate any migration
(win9x, win2k, xp, etc.) in a single machine without having to set up all of the different
environments. This improves the number of test variations we can run in a fixed time,
and improves the configurability of those variations because they don't have to
correspond to a real system.

This was a huge efficiency gain and allowed the team to run an enormous number of test
cases over and over, ensuring that users would have a smooth migration experience with
Windows Vista. With the addition of the abstraction layer, the team created deterministic
behavior without having to go through the expense of actually installing an earlier
operating system (some of which could only be done manually), upgrading, wiping the
upgrade, and reinstalling the old operating system. They still had a set of core scenarios
they ran on "real" down-level clients, but they didn't have to run those scenarios every
day, and the scenarios weren't required to do a quick unit or regression test pass.

In some cases, having a controllable configuration option is the only practical way to get testing
accomplished. For example, if a developer wrote code to handle a certificate expiration error and by
default certificates expired only after six months, it would be difficult to run a quick unit test to
verify that the error code is handled correctly. But if the certificate timeout value could be changed
to six seconds, the code suddenly would become testable. Forcing determinism and predictability or
forcing a particular code path or being able to change a threshold value such as a timeout without
having to reinstall the software or restart the computer is an important way of increasing control
and thus testability.

Knowledge: Knowing What the Expected Results Are

OK, so the software is easily exercised in an automated fashion, and the results are efficiently
observable. How does one know if the observed behavior is actually the correct behavior? Knowing
what the right behavior is and communicating that effectively to the human tester who is writing the
tests is another important aspect of testability. Testers have to know what the expected results are
based on a specific set of inputs. This can be classified as predictability and is very important in
simplifying test development.

During the analysis phase of a test, there must be some authority, sometimes referred to as the
test oracle, against which the actual observed results of the software under test are compared.
When software isn't predictable, it makes programming the oracle nigh on impossible—at least not
without causing the tester to write extensive interpretive code to deal with the ambiguities. For
example, if a method returns an unsorted list of data, the tester has to sort the data before
validating the list of data. If the data is returned sorted, the code to validate the data is much
simpler because the data is more predictable. This information is sometimes left out of
specifications, and often the project documentation does not contain all the information a tester
needs to know to program the test oracle accurately.

One practical way to improve the documentation is to create a specification inspection checklist
specifically for testability to ensure that the key pieces of information a tester needs to implement
the test oracle accurately and fully are included in the documentation. Creating such a list and then
reviewing product specifications and even filing bugs against the specification if the information is
missing will greatly improve testability. The following are some pieces of information that directly

affect knowledge of expected results and should be part of the project definition and design
documentation:

e Anytime lists of data are returned or stored or displayed, the order should be established to
enhance predictability.

e Computer or data flow diagrams describing the interactions between components in the
software, both normal conditions and how the software behaves for each possible error
condition.

e Details about major methods or functions used that determine the state of the system.
These may include conditions under which the method is called (those old assertions from
Computer Science 101) and the expected results, including error codes or exceptions that
can be thrown and under what circumstances.

Expected memory usage at start and at various points in the component lifetime.
Security implications and restrictions, which are particularly important if behavior is
changed based on the user rights of a particular user account.

e Usage logging or tracing that the developer may use for diagnostic and debugging
purposes, but that often proves helpful for testers as well.

e Complete list of source files and locations and where the resulting built binaries are in an
installed system. This helps create a map of where components are and where they go to
improve setup automation.

List of dependencies that are external to the software.
Configuration options, threshold values, timeouts, any heuristics that influence the behavior
of the software under test.

e Any information that can help the tester understand what can be observed and controlled in
an automated fashion. Oftentimes, for their own diagnostic purposes, developers put in
hooks that can also be reused by test automation to improve the setup, execution, or
analysis phase.

Having extensive knowledge of expected results is important to create a test oracle or model of the
software under test such that the analysis phase of the test can be accurate and complete in
judging whether the test passes or fails. This knowledge must be transferred to testers to increase
testability and make the whole test automation more accurate and efficient.

Avoiding the Risks of Implementing Testability

Anything can be overdesigned, including testability. Unless there's a clear plan to use a specific
testability feature, it's a waste of time to implement such a feature. Sometimes testability features
can also be security risks. Bret Pettichord related an incident in his seminal paper Design for
Testability:[® "A security flaw in the Palm OS that allowed anyone to access password-protected
information took advantage of a test interface."

¥ Bret Pettichord, Design for Testability (2002), p. 24,
www.io.com/~wazmo/papers/design_for_testability PNSQC.pdf.

Logging output that was designed to unveil the inner workings of software to improve testability can
end up revealing too much information, for example, a customer password in clear text or other
information disclosures. Without a plan to ensure that security and privacy concerns are being
mitigated, testability can end up being more costly by creating a maintenance and public relations
nightmare and possibly a security hole that can be used to exploit customers.

Conclusion

To improve overall testability of software, improve in each area of SOCK: Simplicity, Observability,
Control, and Knowledge of expected results. A project that is only as complex as it needs to be, is
observable, is controllable, and provides knowledge transfer and predictability to test developers
about expected behavior is a testable project. Along with testability comes an increase in the ability
to diagnose problems quickly. Improved testability reduces the cost of test automation and

increases the reliability and accuracy of the tests in proving whether the software is meeting the
requirements. The most practical way of ensuring that software is highly testable is through the
specification inspection process, whereby a testability checklist is used to ensure that the software
from the beginning is architected and designed to be testable.

Part Ill: Defect Analysis Techniques

In this part:
Chapter 7: Software Measurement and Metrics
Chapter 8: Risk Analysis
Chapter 9: Using Simulation and Modeling for Organizational Innovation
Chapter 10: Defect Taxonomies

Chapter 11: Root Cause Analysis

Chapter 7. Software Measurement and Metrics

To identify the defect prevention metrics and other metrics that are right for your business, you
must start with a strategic overview. The balanced scorecard is a good way to realize this. Only with
a strong understanding of your business can you tie defect prevention metrics to your goals. An
effective scorecarding effort ensures that you know the impact of what you are measuring. For
example, many software teams find code coverage™ an important defect prevention metric.
Unfortunately, there is no correlation between higher code coverage and higher-quality code. In
fact, it is quite the opposite, although this in not intuitively obvious. There are many explanations
for this—one of which is that higher code coverage numbers reflect more test breadth and not test
depth. If the Pareto principle! tells us that 80 percent of the defects customers care about are
likely in 20 percent of the code, higher code coverage numbers correlating to lower quality makes
sense.

W wikipedia, "Code Coverage," http://en.wikipedia.org/wiki/Code_coverage.
@ Kerri Simon, "80/20 Rule," iSixSigma, www.isixsigma.com/library/content/c010527d.asp.

Even though code coverage is a widely collected metric and thought necessary, many people think
that this metric tells them more than it actually does. It certainly sounds like an important metric.
The challenge here is to tie the metric data back to a business goal. Basically, why do you want to
know this number? We recommend that rather than mapping metrics back to a business goal, start
with an understanding of your business goals to establish which metrics you should track. Look to
the remaining chapters in this section of the book to learn more about the metrics associated with
specific defect prevention techniques.

This chapter discusses mission, goals, and metrics, the keys to implementing an overall scorecard
that can help you identify the most important parts of your business strategies and improve
alignment between your strategies and business performance, eventually leading to the metrics you
should really care about. The primary focus of this chapter is how to build an effective scorecard.
The focus is not on specific defect prevention metrics but rather on methods of getting to the right
set of metrics for your business. Although it seems everyone wants to know what the ideal metrics
needed for optimal effectiveness are, there is no magic set. The metrics you need to collect and
employ truly depend on what you are trying to do and what your business is about.

Understanding the Keys to Building a Successful Scorecard

Any discussion of metrics must start with clear identification of the organization's mission and goals.
By identifying these first, you can track and course-correct as necessary during the life cycle of your
project. Without knowing the mission and goals, you will have an extremely difficult time choosing
metrics that will give you a good picture of your business. Also, you will not have a strong
understanding of any metric dependencies and the behavior that will be driven by the metrics.

It may sound easy to write goals, and it can be, but it does take time and effort to think through
what you, your business, and your organization need and want to accomplish. A common mistake
organizations make is to spend their effort planning what the scorecard will look like and deciding
which metrics they should track, and setting their goals afterward. This frequently leads to driving
for the wrong results. By setting your goals first, you can ensure that the metrics you track drive
the behavior, performance, and results you want to achieve. Also, by setting good goals you will
know when your project is completed.

There are many organizations that either do not take the time to set their goals appropriately or do
not effectively communicate their goals throughout the organization. This leads to management
interrupting when they want information (data) because the data is either not collected or is not
reported. Mad scrambles to collect and report the necessary data required to make effective
business decisions disrupt productivity.

In one instance during the development of a popular product, the executive staff wanted a set of
specific information pulled together from across multiple teams. Thankfully, each team already
knew the data they needed to report and had previously set up disparate systems to do this.
Unfortunately, there was no one pulling this together in one place. Separately, the data was
interesting, but together, the data was vital. Although this ended up as a fire drill for a small set of
individuals, because goals had been set and the data was already being collected, it was simply a
matter of pulling everything together. It would have seriously affected productivity and the overall
product if the teams had not taken the time first to understand their goals from the beginning of the
project.

Setting good goals is all predicated on the knowledge that you understand your processes and their
capabilities. Without such understanding, goal setting makes little sense: How can you set a goal if
you don't know whether your process is actually capable of achieving it? After the business
processes are defined,™ you will be able to ascertain how they can be optimized for the system.
This knowledge leads you toward goals that will truly make a difference in the resultant internal
efficiencies and product quality.

W For more information about process capability, see W. Edwards Deming, Out of the Crisis
(Cambridge, MA: MIT Press, 2000).

To establish a scorecard for your business, you must first identify the purpose of what you want to
accomplish. For example, the purpose could be to refocus the organization on the company's
strategy or to improve alignment between strategy and business performance. As long as you
understand the purpose, you will be able to tie your vision, strategy, goals, and metrics together
into a usable and effective scorecard.

By implementing the following four keys,™ you can build a successful scorecard:

M Internal CPE training developed by Lori Ada Kilty, based on Bl Apps Balanced Scorecard
documentation taken from Kaplan/Norton and Robert B. Grady, Practical Software Metrics for
Project Management and Process Improvement (Upper Saddle River, NJ: Prentice Hall, 1992), and
internal Six Sigma training.

Create clear definitions of strategic objectives and business result metrics.
Create clear definitions of business, process, and improvement objectives.
Communicate defined goals to all levels of management.

Gain broad acceptance of the defined goals.

Each key is described in more detail in the following sections.

Creating Clear Definitions of Strategic Objectives

In the software business, the vision and mission of most organizations boil down to sell more and
spend less to develop or create the end product. Depending on the size of your business, selling
more is often left up to sales and marketing forces and spending less to develop or create the end
product is left up to product development teams. Clear definition of strategic objectives and
business result metrics ensures that the product teams and sales teams are accountable to each
other. As we saw in Chapter 3, the high initial cost and the low marginal cost of software
development really drive toward these goals.

First, you must identify your business strategies. Whether you are doing this for a small or large
business, you will need to engage the appropriate leaders. The four categories of business
strategies or perspectives are as follows:

e Customer How do customers see your business results?
e Internal business What things must you excel at?
e Financial How does your business look to shareholders?

e Innovation Can you continue to improve and create value?

Defining a Customer Strategy

At the start of a software development cycle, you need to identify your target customers and why
they would want to buy your product. For whom are you building this product? You also need to
ensure that your product is scoped appropriately for your customer. For example, if your product is
targeted only to accountants who have specific hardware requirements, scope your product for that
audience. You need to make sure that you truly understand your customers' needs and acceptable
limitations.

If you have a marketing department or personnel, they should be well versed in performing Kano™
analysis outlining needs and wants. In a Kano model, customer needs are called "must-haves" and
customer wants are considered "delighters." The caveat with delighters is that past delighters may
now be current must-haves, so you should ensure that needs and wants are categorized
appropriately. For example, having different levels of software security is a must-have for some
customers, and for others, it is a delighter. There are certain needs businesses must have with
respect to security that other customers do not necessarily need but do appreciate. One example is
parental controls. Mostly, parents want this level of security, and for them it has gone from being a
delighter to a must-have. Other advanced security features may unfortunately affect the usability
for some customers, turning security features into detractors. To mitigate this business must-have,
we give the customer choices in setting their security level. This is important when dealing with a a
broad customer base.

W jsixSigma, "Kano Analysis," www.isixsigma.com/tt/kano/.

A simple nonsoftware example is traveling by air in coach versus business or first class. Coach will
get you to your destination, which is the must-have. However, traveling in business or first class
would be a delighter if you were unexpectedly upgraded from coach. Keep in mind that unexpected
amenities could be delighters or detractors, depending on what is provided. It is important to
understand what a delighter is and what is noise or a detractor. This brings up another benefit of
Kano analysis—it allows you to understand what doesn't matter. In other words, you can discern
areas in which making improvements or innovations won't result in higher customer satisfaction or
more sales, so spending effort in those areas doesn't make sense. Southwest Airlines has used
analysis techniques to recognize that advance seat assignment is not a must-have for all
passengers and is not enough of a delighter to justify slowing the boarding time by providing this
service.” However, when sitting together is a must-have for certain clients (parents with children,
for example), these clients are allowed to seat themselves first. With this strategy, the airline can
guarantee quicker boarding times overall while still ensuring that parties who must sit together do
so. As the airline grows and expands, so do their requirements. They are now undertaking new
studies to determine whether a seat assignment is indeed a must-have in the future.® After you
understand customer needs and wants, you will have your top customer scenarios. At this point,
you can use a tool like Scenario Voting, as described in Chapter 15, to monitor and assess scenario
value.

2l wikipedia, "Southwest Airlines," http://en.wikipedia.org/wiki/Southwest_Airlines.

¥ Dan Reed, "Southwest Closer to Assigned Seating," USAToday.com, June 21, 2006,
www.usatoday.com/money/biztravel/2006-06-21-southwest-usat_x.htm.

Defining an Internal Business Strategy

Of the four categories of business strategies, this one can be considered the toughest to define
because it focuses on how you operate your business. Software metrics for productivity are
frequently the most sought after and most difficult to implement and maintain. The Personal
Software Process and Team Software Process (see Chapter 12, "Adopting Processes") advocate size,
time, and defects as the three areas of productivity metrics. This is a good way to frame the
strategies you need to achieve internally.

Although it may seem an oversimplification, these three areas really cover it all. Another way to
think about this is that any productivity metrics you measure can be bucketed by size, time, and
defects. Lines of code, though controversial, can be an effective (not perfect) measure of size. Both
size and time help you understand effort: How long did a project or task take? (estimates versus
actual times, and so forth). Combining effort data with defect data (found rates, fixed rates, and so
on) helps you understand process capability. Again, this is covered in more detail in Chapter 12.

Defining a Financial Strategy

This is by far the most important area to focus on because a business cannot survive without a
sound financial plan. This strategy focuses on both revenue and the dollars behind how you run
your business. How you run your business can be the most tricky to understand in monetary terms.
If you are in one of many organizations in a large business, it may be more difficult to tie your profit
and loss to the overall financials of the company. Still, you must identify the right measurements to
make to drive the right behaviors in your organization and ensure that the business makes money.

Businesses often focus on cost cutting and trying to improve an area’s efficiency. The questions you
need to answer are, Is your business focusing on the right things and are you sure? If you answer
yes, think about what makes you sure and if it is justified. If you answer no, you need to identify
what you should be focusing on and why. In businesses other than software, investment decisions
follow a rigorous method for approval. In software, decisions often are less precise due to the low
needs for capital expenditures and the difficulty of measuring costs. Further, high margins mask
executive mistakes and erode fiscal discipline for anything not tied directly to a budget. The focus
on the bottom line along with a strategy that measures only budget leads to ignoring high-return
improvement projects. The risk versus reward measurements need to provide an accurate view of
investment opportunities. The goals of the organization need the correct measures to guide
investment.

Defining an Innovation Strategy

Innovation is about identifying ways to grow your business beyond what you do today. It may mean
creating new product lines or innovating features in current products. It could also mean driving
processes to foster innovation internally. This strategy may seem to overlap with the others, but it
truly is worth calling out separately to ensure that your business focuses not only on the bottom line
today but what you would like to achieve long term. Strategies in this area can help you stay on
track for advancement.

After you have established your business strategies, review them. If you are satisfied that your
business can achieve the strategies laid out and in the appropriate time frame, you can move on to
identifying goals. Otherwise, you will need to prioritize the strategies so that you can focus on the
most important ones first. For some, it may simply be obvious where you want to focus based on
financial data. For others, it may not be as clear. You can prioritize in many ways. One good way to
prioritize is by using a prioritization matrix. Table 7-2 later in this chapter is an example of a simple
prioritization matrix.

Table 7-1 shows an example of how to map your business strategies to goals. The customer goals
are used throughout the rest of this chapter as an example of how to set goals and determine the
right set of metrics to track.

Table 7-1. Business Strategy Mapping

Vision Strategy Perspective Goal

Improve customer Ensure that top Financial Increase number of very satisfied
satisfaction customer issues are customers at same or lower cost.

Vision

Table 7-1. Business Strategy Mapping

Strategy Perspective
addressed
Internal
business
Innovation
Customer

Goal
Reduce cost per incident.

Reduce time to solution for reported
bugs.

Introduce automatic updating to
solve issues before reported.

Create Tool X to collect data on
customer issues automatically.

X percent of top customer problems
included in service pack.

Use Tool X data to prioritize service
pack work.

X percent of technical staff respond
to newsgroups weekly (hourly).

Creating Clear Definitions of Business, Process, and Improvement

Objectives

Although this topic may sound daunting, this is really about identifying your goals. To get started,
you need to determine the type of goal you are trying to achieve, how you will measure completion,
and how you will measure success.

Understanding Goal Types

There are three types of goals: business, process, and process improvement.

Business goals, also considered strategic goals, are what the organization needs to do to
stay in business. To set these goals, use results of market analysis and constraints from the
larger organization (such as mandatory compliance with an overall corporate policy).
Process goals are based on your past performance and serve as a barometer for current
process stability. You can use schedule, cost, quality, and productivity history to set these
goals appropriately.
Process improvement goals are intended to alter the steady state of your process goals
after they have been reached. You can then transition process improvement goals into
standard process goals. It is within this goal type that defect prevention techniques play the
largest role.

After you understand the different types of goal, you can more easily create the right goals for your
needs. Understanding which type a goal is helps you formulate the goal properly and assess where
the primary focus needs to be or whether an area is being neglected. Ensure that you include the
three different types of goals in your scorecard.

Identifying Goals

Now that you have identified your strategic objectives and understand the goal categories, the next
step is to identify the goal. Determine which actions (goals) you need to take to execute your
strategies. You can use the following questions in this process:

® \What are you seeking to accomplish?
® How will your success be measured (leading and lagging indicators)?
® What are the deliverables?

® When will you need to deliver the results?

For example, for Microsoft's business and employee goals, we ensure that our goals are specific,
measurable, achievable, results oriented, and time-bound (SMART). (SMART goals are discussed in
more detail at the end of this section.) A great way of getting to SMART goals is by using a
technique Victor R. Basili developed and coined the Goal Question Metric approach, or GOM.I* The
GQM model has three levels:

W victor R. Basili, "Establishing a Measurement Program" (College Park: University of Maryland,
2006), www.cs.umd.edu/~basili/presentations/2006%20WiproTalk.pdf.

e Conceptual level—Goal
e Operational level—Question
e Quantitative level—Metric

GQM is a great model to follow because it forces you to ask the questions to ensure that you are
measuring the right things. In other words, it helps you tie your metrics to your goals.

Determining Metrics

It is easy to say that you need to establish how your success will be measured, but to sit down and
plan it is not so easy. However, taking the time to do this will lead to the creation of useful metrics
and release you from relying on postmortem perceptions or gut-feel checks.

If you are having trouble determining the right metrics for your goal, you can derive a set of metrics
from the answers to the following questions:

e How will you know you have met your goal?

e What questions do you need answered to show success?

Example: | want to use Tool X (which gathers quantifiable feedback from customers on shipped
product) results to affect prioritization of future service pack (SP) work. To derive metrics for this
goal, answer the following questions:

® How are Tool X results being analyzed?

e Have Tool X results been prioritized based on impact?

® Does the SP include fixes addressing top Tool X issues?

After you know the answers, you can brainstorm potential in-process metrics (also known as leading
indicators or predictors). Be sure to focus on predictive measures and not reactive measures. Also,
choose actionable information to course-correct appropriately throughout the product development
life cycle. Finally, ensure that your information source is consistent with itself.

Example: Potential Tool X In-Process Metrics

® How are Tool X results being analyzed?

® 9 of results sorted in buckets (categories)
e Elapsed time between results and sorting

e Have Tool X results been prioritized based on impact?

e 9 of prioritization complete

® Does the SP include fixes addressing top Tool X issues?

e 9 of high-impact problems fixed and included in SP

Prioritizing Metrics

When you have identified a set of metrics, you need to prioritize them. First, you must validate any
assumptions about the metric. For example: Are you getting representative feedback from all
customers? Are there types of failure where Tool X will not collect data? Does prioritization correctly
take into account customer needs? Also, you must provide any additional detail or taxonomy
information, if necessary. This helps you remember exactly how the metric is being defined and will
allow for easier weighting. For more information on representative feedback, see Chapter 15.

Weighting Metrics

After you have defined the metric and provided necessary detail, you need to identify an
appropriate weighting method. The following method was established internally at Microsoft to
weight metrics across several different product teams, including Windows, Visual Studio, and
Exchange.

Ease of Startup How easy is this metric to get initially?

Ease of Maintenance How easy is this metric to track continually?
Usefulness How useful is this metric to you?

Collected Today Is this metric collected today?

Trust Level Do you trust the data this metric provides?

The multiplier for each weight is as follows:

e Ease of Startup = 3. Although setting up a metric to be tracked may entail difficulty or
work, it is not the limiting factor on whether the work should be undertaken.

e Ease of Maintenance = 3. Again, difficulty or work that definitely affects our abilities may be
involved in collecting and tracking a metric but is not the limiting factor on whether the
work should be undertaken.

e Usefulness = 9. If the metric is not useful even if it is related or seems as though it might
be useful, there is no point in collecting and tracking it.

e Collected Today = 1. This is a yes or no question, and although it should not have a huge
impact, an edge could be given to a metric that is currently being collected.

e Trust Level = 9. If a metric has no Usefulness and Trust Level rating, there is no value in
monitoring and using that metric; therefore, these two factors should carry the most
weight.

The rating system is based on high = 9, medium = 3, and low = 1. In some cases, you may want to
use additional granularity between medium and high (such as medium-high = 6), but if you can
avoid this, do so. The prioritization numbers are generally far more interesting and accurate when
your granularity is not too tight. This may seem illogical until you go through the exercise of
prioritizing the ratings. However, some individuals find it extremely difficult to rate appropriately
without a finer granularity. To avoid this issue, use letters such as h = high, m = medium, or | =
low instead of numbers when rating in a group setting and apply the numbers in the background
afterward or in an unexposed formula. The only rating this will not apply to is Collected Today. For
Collected Today, use "Yes" or "No" with values of 1 and 0, respectively.

The formula for prioritization is the following:

(Ease of Startup x 3) + (Ease of Maintenance x 3) + (Usefulness x 9) + (Collected Today x 1) +
(Trust Level x 9) = Prioritization Value

Table 7-2 shows an example prioritization matrix.

Table 7-2. Metrics Prioritization Matrix

Improvement Target: Tool X

Weight Values 3 3 9 1 9
Goal Ease of Ease of Collect Trust
Goal Priority Metric Startup Maintaining Usefulness Today Level Priority
Tool X h % of results m m m No h 136
used to sorted in
prioritize buckets
SP work
Tool X h Elapsed time h m h No m 154
used to between
prioritize results and
SP work sorting
Tool X h % of m | m No m 100
used to prioritization
prioritize complete
SP work
Tool X h % of high- m m h No h 190
used to impact fixes
prioritize included in

SP work SP

From Table 7-2, you can see that the percentage of high-impact bug fixes is definitely the metric
that carries the highest priority. This example does not take into account the goal priority.
Prioritizing goals is discussed later in this chapter. When setting up your formula, determine
whether goal priority should have an impact on the metrics and adjust your formula accordingly.

For conducting a group rating exercise, you need to define how to rate. For example, where ease of
startup is most difficult, the rating will be 1 or d for difficult (where d = 1) or h for high difficulty
(where h = 1). Use a lettering system that makes sense to you and that you can define and explain
to others. Although numbers may be simpler to explain, as mentioned earlier, using numbers could
affect the granularity of the ratings, and thus, the outcome would be less distinguishable.

Avoiding Metric Manipulation

One other important thing to keep in mind is that metrics are easy to manipulate or game if people
think they are being rated on the outcomes. And you must be careful to ensure that what you are
measuring will result in the behaviors you want to encourage. To avoid metric manipulation, you will
likely need to rely on a combination of metrics so that the manipulation of one will not cause invalid
data. This means understanding metric dependencies.

For example, you want to decrease the turnaround time on bugs, so you start tracking how long it
takes developers to fix bugs. When the developers realize that fix time is being tracked and possibly
used as a performance metric against them, they will surely find a way to game the metric to make
themselves look better. One way to do so would be to report a false resolution. By the time the bug
is reactivated, the developer may have a real fix and the turnaround time recorded for the
developer would be much less than if he or she had left the bug unfixed while coding the fix.
Measuring turnaround time alone is definitely driving the wrong behavior because the metric has a
dependency.

To counter this sort of metric manipulation, you can monitor the reactivation rate of bugs along with
turnaround time to ensure that false resolutions are not being used to buy time. Use the GQM
methodology to help you uncover metric dependencies. Also, DeMarco's book Controlling Software
Projects™ delves into metric modeling and can help you map out and understand the underlying
dependencies.

™ Tom DeMarco, Controlling Software Projects: Management, Measurement, and Estimates (Upper
Saddle River, NJ: Prentice Hall, 1986).

Scoping Goals Appropriately

After you have completed the prioritization exercise, you should have a set of defined metrics that
map to your goals. In other words, you should know how your goals will be measured—both in-
process goals and final results (success). Now that you have measurable goals, you need to scope
each goal appropriately so that you can actually meet the goal in a reasonable or specified time
frame.

Consider also if your project is broken down into milestones or modules. If so, you need to set goals
for each milestone as well as set overall project goals. To do this, you will need to estimate when
your deliverables will be completed. Most estimates are based on previous experience, thoughtful
planning (if previous experience cannot be relied upon), or total guesses. Tom DeMarco has put a
lot of thought into what makes estimates valid, so we do not go into that here. Suffice it to say that
referencing his material is well worth the effort so that you can plan your software development
projects using valid estimates. An accurate schedule is an effective defect prevention technique.

Prioritizing Goals

The final step is to prioritize your goals. After you have set goals and prioritized metrics, you may
realize that you have too many or too few goals. If too few, you need to identify the gaps in your
goals. The best way is to do this is by ensuring that you have goals mapped to all four categories of
business strategies (customer, internal business, financial, and innovation) and that the goals are
an appropriate mixture of goal types (business, process, and process improvement).

More likely, you will have too many goals. If this is the case, you need to prioritize them. To do this,
focus on the critical goals first and then establish a time frame to focus on the next set of goals. For
example, what are the must-haves for final release or beta release but not essential for the next
milestone? Keep in mind that prioritization does not need to be done by committee and may come
from senior leadership. Otherwise, you can weight goals by overall strategy, customer impact, need,
feasibility, current performance, and other factors important to your business.

Creating SMART Goals

What are SMART goals? As stated earlier, goals that are specific, measurable, achievable, results
oriented, and time-bound. Microsoft's business and employee personal goals (each employee sets
up formal professional goals annually) must meet the following criteria.

e Specific Does it address a real business problem? Is it exact? Is it mapped to a business
strategy? Is it scoped appropriately? The project scope defines the boundaries of the
business opportunity. What are the boundaries, the starting and ending steps of a process,
of the initiative? What parts of the business are included? What parts of the business are
not included? What, if anything, is outside the team's boundaries?

e Measurable Are you able to measure the problem, establish a baseline, and set targets for
improvement? How do you know you are on track to complete the goal successfully? How
do you know you have completed the goal successfully? Have you identified in-process and
result metrics? (Remember, if you are having trouble making your goals measurable, try
using the GQM method to help identify the right set of metrics.)

e Achievable Have you scoped your goal to be challenging but not unrealistic? Can you
actually complete what you have defined? Is this goal in the control of the organization,
team, or individual? What are the system dependencies? How much control does the
organization, team, or individual have over the dependencies? Ensure that you are not
setting up an individual or group for failure by setting a goal they have no realistic ability to
meet as a result of forces beyond their control.

e Results oriented Have you outlined your deliverables (and success metrics for your
deliverables) and not just the steps you need to take?

e Time-bound Have you identified milestones, checkpoints, and a completion date? This step
often is omitted initially because this information is unknown and then, unfortunately,
forgotten about. It is critical to ensure that you actually achieve your goals when they still
matter.

Communicating Defined Goals to All Levels of Management

Now that you know how to create SMART goals that are important to your business, the next step is
to determine how to collect the data to track and measure the goals as well as how this information
will be effectively communicated to the right parties.

Although it is sometimes useful to track metrics in separate places, aggregating the information in
one location allows for easier tracking of overall progress and dependency analysis. This process is
best done by a group separate from the software development group to keep from degrading the
metric. Even if a team has the best of intentions, it is human nature to optimize for the metric
rather than for the intended purpose of collecting the metric. A third party can help to alleviate that.
It is also best to make data collection automatic when possible to help with data integrity.

Collecting and Presenting Data

For each goal and metric, you need to identify the data source and measure current performance to
establish baselines. It is helpful to have the metric definition available as well. If history is available,
you can review this data and use it as a potential predictor. If this data is not available, you need to
decide whether maintaining history is important and, if so, how that data will be stored and
maintained. If you have the ability to store it, you should. Historical data can be invaluable for
planning your next project, learning what went right and wrong with your last project, keeping tabs
on what is going on with your current project, and identifying trends in and between product cycles.

By understanding trends, you can more easily set your own release criteria. Release criteria must
include the minimum acceptable targets and stretch goals. Basically, what is acceptable for shipping
versus the ideal goal? It is often difficult to differentiate between what is acceptable and what is
ideal because, of course, you want to ship the best-quality product you can. Unfortunately, this is
not often realistic because you do not have all the time in the world to release a perfect product. If
ship dates are missed, opportunities are missed and the technology becomes stale. To be ready
when a window of opportunity is open, sometimes tradeoffs must be made. This is why
understanding the must-haves and delighters is so important—you need this knowledge to make
the right decisions for your customers.

Armed with minimum and stretch targets, you next need to identify the interval for data collection.
Should you collect data hourly? Daily? Weekly? Or should the data be real time? If not in real time,
what time of day or week is the data updated? This leads to questions of how often the data needs
to be reported and in what format.

After you have collected metric data, you must determine the best way to present it. Do you want
to present by goal? By strategy? By metric? One of the ways the Microsoft Windows team
centralizes data and presents it internally is by using a heatmap that shows release criteria. The
release criteria are a set of goals with related metrics that must be reached to ship the product. The
Windows team sets release criteria around a number of areas such as performance and security.
The heatmap reflects if any of these areas are not on track. The heatmap shown in Figure 7-1 is an
example of an in-process one that could be used to drive goals toward a specific milestone. You
would track each of the blocks to ensure that they are green by a specified date before considering
entering the next milestone. (Note: The data reflected in Figure 7-1 has been randomly created to
demonstrate chart use and is not an accurate representation of Windows metric values.)

Figure 7-1. Release criteria heatmap

[View full size image]

Balfancnd Scorecard usmnr Feodback

Accessibility L)l Feature
Complete

85% 82%

S F
Compliance Performance

Productivity Games
Completed

100% 68%

Failure Analysis Risk Analysis S_Iochasﬁc Hﬂﬂ'ﬂﬁfﬁg i

Defect 2 ¥l Mm@m;

Taxonomy
Completed

315 bugs (5%)
RCA Studies Al Test coverage Defect Density]

13
bugs/kloc 42

Preventions

Regardless of what medium you use to reflect your data, the most important thing is to get the data
published in a way that is available, appropriate, and consumable by various audiences. We have
found that executives like the heatmap view, but midlevel managers want to be able to focus on the
details. For large and small organizations, you need to provide both overview and detail
perspectives. One way to do this is to have click-through data that gives more detailed information
for each block. Also, mouse-over information can provide specific targets and other pertinent
information that is not too detailed.

Automating the Data Collection and Reporting
Processes

Automating data collection and reporting is frequently the focus of a metrics program.
Unfortunately, all the activities that lead up to this point should really be the focus. In all the
metrics programs in which we have been involved internally, the only successful ones have been
those for which the teams took the time to set their goals, tie goals to their business objectives, and
determine the best set of metrics to track their success. Teams that spent time focusing primarily
on the technology of automating and reporting the data ended up not having any metrics story or
having to start over again. Many teams across Microsoft have focused first on establishing goals and
ensuring that the goals were tied to the team's business objectives.

For example, in 2002, one team started by mapping their business strategy to technical goals and
eventually developed a detailed scorecard that they were able to automate. This team recognized
that there were holes in their mapping and identified the six areas that were highly important for
their business and universal to each feature team, such as performance. They then created a
program with central reporting to provide visibility into each of those metrics. They had monitors all
over the building advertising these central defect prevention metrics, updated daily. This gave
visibility to the areas they felt were vital to quality but were not getting enough attention.

Another team started by defining what quality meant for their business and then identified the areas
most important for quality, such as reliability. From there, they were able to prioritize the metrics

they thought would give them the most insight into reliability: Average/mean/median response time
and response time variation. They were also able to identify metrics they would like to track in the
future but that they were not going to tackle for their first-generation scorecard. This was a good
plan because it allowed the team to acknowledge the importance of additional metrics while
ensuring that they were focused on the critical few to start.

The key takeaway from each of these efforts is that each team started with goals that were mapped
to business objectives, which is crucial to having a successfully adopted metrics program. That said,
automation and reporting are not areas that can be ignored, but we want to emphasize that you
must not jump ahead to this point before establishing useful goals. Having an automated reporting
system with no knowledge of what data to collect is not terribly useful.

When you are ready, you need to spend some time figuring out how you will automate the data
streams you have identified. For some streams, this may be fairly straightforward: for example,
defect data, if it is already being collected. As long as the defect data is in a tracking system, it
should be easy to query the data for trending purposes. Most systems use a database or data
warehouse to store data for reporting and some sort of Web front end for viewing the data. Several
systems available for purchase provide this functionality, or if you have the resources internally, you
can certainly build such a system yourself.

Before you can determine the frequency with which the streams need to be updated and what the
actual report looks like, you need to understand how the data will be viewed and by whom. As
mentioned in the preceding section, you will likely need to provide different views for different
audiences. Do you need to provide a daily, monthly, or quarterly report? Does the report need to be
broken down by milestone? Do your metrics need to be separated as in-process and results? How
much drill-down capability should be available? Is the report live or static and updated hourly, daily,
and so forth? If live, consider performance issues depending on the amount of data being accessed.

After you understand your audience's needs, you can hook up the data streams and generate the
appropriate reports. The heatmap in Figure 7-1 is an example of a daily report with at-a-glance
information for managers and drill-down capability for more detail as necessary.

Review
This chapter so far has provided instruction on how to create a scorecard. Key points to remember:

Identify the data source for each metric.

Get baselines (current performance).

Set release criteria.

Set minimum acceptable targets.

Set stretch goals.

Set frequency of measurement.

Determine how measurement will be automated.

Determine how data will be stored historically.

Set frequency and mode of reporting.

Determine how often you need to report each metric—once per milestone, weekly, daily,
and so forth.

e Determine how metrics will be reported—scorecard on Web, release criteria through release
management team, daily status meetings, or some other way.

Gaining Widespread Acceptance of the Defined Goals

For any scorecard and metrics program to be successful, the established goals must be accepted by
the population at large. Teams being measured that don't believe in the goals or metrics being used
are not likely to take the results seriously. Executives who don't understand how the goals you are
tracking align with their objectives will not pay attention.

Although it may seem simpler to skip creating a metrics program if you do not believe that the
organization will support it, not having one will ultimately destroy your business. A business cannot
survive without understanding what it is doing—through goals and measurements. Even if they
resist initially, people are ultimately happier when they know what they are working toward, why,
and how they will be rated. Although it may seem counterintuitive while the program is being
implemented, morale invariably improves when people know what is expected of them.

Yes, it can be difficult to get a metrics program off the ground, but it is certainly not impossible. To
get started, you must ensure that you are using metrics as incentives and not using them against
individuals as a performance evaluation tool. Especially in the early stages, using metrics as a
performance stick practically guarantees lack of support and ultimate failure of the program.

To create and establish a metrics program, whether company-wide or for a small team, you need to
identify the key players. First, you must know the type of team members needed. Are you planning
on having a separate metrics group? Or will the effort be driven from project management, release
team, or testing? Will metrics team membership be taken from across functional areas? Or must
team membership consist of key leaders in the organization? ldeally, you incorporate team
members who have credibility and the ability to influence others because they will be the most
helpful in driving adoption and acceptance of the metrics program.

Further, you must define at what stage each member will be needed and who is accountable to
whom and for what. As mentioned earlier in the chapter, you need to be able to answer the
questions of how and how often the team reports the metrics. Can they use an automated system
that has been set up centrally, or will they need to supplement an existing system or provide the
data for it?

One key point is understanding who the executive sponsor is and defining this individual's
responsibility to the team. Depending on the culture of your organization, a good executive sponsor
brought into the effort can make or break adoption of a metrics program.

After you have the team in place, goals established, metrics identified, the reporting mechanism set
up, and reporting protocols defined, you need to ensure that a continual feedback loop validates the
metrics being tracked. There is no point in tracking metrics that either do not reflect what you
thought they would or drive the wrong behavior. It is important to evaluate your metrics continually
to ensure that they are painting an accurate picture.

For example, on one team a situation arose in which a product unit tracked a particular stress
metric for many months before someone on the defect prevention team discovered that the formula
in use did not reflect the actual status. The biggest problem in correcting this situation was in
changing the mindset of the audience to accept a different set of numbers than they had been
accustomed to seeing. Because of that, the team chose not to correct the formula until the next
milestone. Although wrong for the remainder of the milestone, the metric in use was consistent, and
by understanding how it was wrong, the team was able to use the metric data appropriately. It was
clear that changing this metric mid-milestone would not be accepted. Indeed, the team predicted
that too much time would be spent by team members arguing against the correction because of
people's natural resistance to change and the perception that they would be held responsible for
presenting misleading data.

As with any cross-group effort, a widespread metrics program needs to be implemented with a
system of continuous improvement. You can validate and police your goals and metrics using a
feedback loop to ensure that your program continues to reflect the ever-changing realities of your
business and customer landscape. As long as you are tracking metrics against goals that make
sense to the organization and support driving the right behaviors, you will be able to garner broad-
based support for the effort.

Conclusion

Dozens of books have been written on software metrics, and yet teams across the industry are
continually stumped about what to measure. Designing a scorecard program is seemingly simple

logic that is difficult to materialize because we are engineers and like numbers, logic, and
predictability, so we tend to focus on metrics and not on goals. If you start by conceptualizing goals
that are tied to your business objectives, you will measure the things that matter for your business,
which could include code coverage, lines of code, inspection rates, defect densities, code churn,
complexity, and so forth. Measuring these factors matters only if you can show how they are tied to
your goals and objectives—how measuring them will improve your business.

To be valuable, your scorecard must help answer the following questions:

e \What is your strategy?
® \When your strategy succeeds, how will your organization be different?
® What are the critical business results (success factors)?

® What are the critical progress (in-process) measurements?

With these questions answered, the process of setting up a scorecard and metrics program becomes
achievable and will be a valuable tool in building success in your overall business. One final caveat:
A metrics program should be used to understand the process your team or organization uses to
create software and determine process capability to make appropriate predictions. This data should
not be used to manage the process itself. In other words, if you understand your process capability,
you know what is realistically achievable, and setting that as a goal is redundant. Setting goals that
are tied to your business objectives, that focus on improving the entire system, and that are
achievable and in the control of the organization is what will make a difference in your business.

Chapter 8. Risk Analysis

A prudent person foresees the danger ahead and takes precautions. The simpleton goes blindly on
and suffers the consequences.

—Proverbs 27:12 (New Living Translation)

What Is Risk?

Risk has been simply defined as "the possibility that an undesirable event occurs."™ Brendan
Murphy, researcher at the Microsoft Research Center in Cambridge, UK, defines software-related
risk as "the likelihood of software containing bugs [defects]." NASA says, "Risk involves the
likelihood that an undesirable event will occur, and the severity of the consequences of the event,
should it occur."®! Defined this way, it is clearly important to understand the risk level of a software
project. In particular, when you know the areas of code that have the highest risk, you can detect
the areas with the highest potential for defects so that you can mitigate that risk by uncovering
those defects as quickly and efficiently as possible.

[BeAnActuary Web Site, "What Is an Actuary?" www.beanactuary.com/about/whatis.cfm.

@ Linda H. Rosenberg, Theodore Hammer, and Albert Gallo, "Continuous Risk Management at

NASA," NASA Software Assurance Technology Center. Paper presented at the Applied Software
Measurement/Software Management Conference, February 1999, San Jose, California.
http://satc.gsfc.nasa.gov/support/ASM_FEB99/crm_at_nasa.html.

This chapter focuses on identifying the risk incurred each time code is added, changed, or deleted.
This churn is the primary source of risk in the implementation, verification, and maintenance phases
of software development. Several other chapters in this book provide insights and practical tips to
ensure that the overall goals and requirements of the software are being achieved. For example,
scenario voting is a powerful mechanism used to let a product's judges, the customers, vote early
and often to ensure that the right dance routine with the right partners is being performed in the
right way. (See Chapter 15, "Scenario Voting.") This chapter gives practical steps on how to do
historical and current risk analyses during the implementation, verification, and maintenance
phases. It steps through creating a risk prediction model and then applying that risk prediction
model to software as it is being changed. Doing a risk analysis as soon as the code changes
provides a mechanism to focus validation efforts where the highest potential for defects exists.

What Is Risk Analysis?

Broadly speaking, risk analysis is made up of two separate but related activities. One is the creation
and maintenance of a risk prediction model based on historical data surrounding an activity. This is
historical risk analysis. The other is the application of the risk prediction model to a current activity.
This is current risk analysis. The goal of historical and current risk analyses is to understand areas
of risk with the intention of mitigating those risks.

During the final few months of 2006 before the Windows Vista operating system shipped, a risk
assessment was done on every fix that was made. In each case, a detailed risk analysis was
completed by a senior test architect. The initial risk analysis report was sent to the Windows Vista
project management leadership, who then ensured that the teams responsible for the late churn
and the teams that were affected by the late churn had accomplished all their risk mitigation
activities before allowing the change to be accepted into the final product.

In one case, a change was made in one commonly used C run-time library function, which
potentially affected hundreds of binaries that called the function. With that many binaries potentially
affected, the product release could have been delayed by two weeks because almost every team in
Windows Vista would be required to reset its test efforts. The Windows Vista leadership team
focused on the details of the changes and quickly determined that the fix was actually in a code

path that was run only in earlier versions of the Microsoft Windows operating system and the code
that all the Windows Vista binaries were using was actually unchanged. So, instead of having to
raise an alarm that would have caused dozens of teams to reset their testing efforts, only a few
teams needed to verify the fix, saving a great deal of time and money over what could have been a
huge fire drill.

In another case, the opposite occurred. A fix was made in a source file for a specific Control Panel
application's Edit dialog box. The team that needed the fix made the change and tested their fix in
their Control Panel program. What they apparently didn't know was that the source file they
changed was shared by several other applications. The risk assessment was able to detect the
impact of the change in a dozen other binaries and notify the owners of those binaries that they
needed to run the subset of their tests that hit the changed dialog box. In this case, the risk
assessment did create more work, but it was focused on the teams that were affected and gave
them direction on what tests to rerun to mitigate the risk of a regression occurring.

The sweet spot with risk analysis is knowing when to raise an alarm and to whom. Sometimes a
silent alarm is best: it notifies a few senior people, and they in turn ask a few pointed questions to
ensure that the elevated level of risk is being properly mitigated.

The result of a historical risk analysis is a risk prediction model that accurately unveils proven areas
of risk in a particular version of software. The result of a current risk analysis is to take the
historical risk prediction model and apply it to interim versions of the software, tracking the relative
risk of each new version as a project progresses. In the Windows Vista examples, that the historical
risk prediction model was based on a study by Microsoft Research™ that showed the number of
dependencies that a binary has is an important factor in calculating risk. The current risk analysis
was done by monitoring the dependencies of the code that was changing and ensuring that all
affected binaries and the teams that owned them were notified of a change in one of their
dependencies so that they could run regression tests to ensure that dependencies were still
compatible with the new code.

[Nachi Nagappan and Tom Ball, "Explaining Failures Using Software Dependences and Churn
Metrics," ftp://ftp.research.microsoft.com/pub/tr/TR-2006-03.pdf.

It's also important to learn from the current analysis and use it to maintain and improve the
accuracy and applicability of the risk prediction model. The historical and current analyses of the
risk involved in certain activities are at the heart of risk analysis. Many industries as well as
individuals engage in risk analysis all the time.

Applying Risk Analysis to River Rafting

River rafting guide companies analyze the risk of someone getting injured on a rafting expedition
and establish risk mitigation protocols based on historical data associated with the industry. They
take that knowledge and combine it with their knowledge of a particular stretch of water. They may
even balance the difficulty of a trip with how much they charge or with safety precautions that they
require for their customers. For example, the company may have a graduated pricing scale based
on the length of the trip and white-water rapid classifications, such as the one shown in Table 8-1.

Table 8-1. Graduated Pricing Scale for River Trips

Rapids Half-Day Full-Day 3-Day
Class I, 1l $75 $150 $500
Class I+ $250 $500 $1,200

A guide company may also require certain safety equipment to be used based on the type of trip,
such as helmets for Class Il or higher rapids, and a mandatory 30-minute safety orientation for
new customers. Although the company is certainly concerned about the welfare of its customers, it
is also aware that implementing these types of safety protocols goes a long way in protecting the
company from monetary damages and legal actions.

In the case of a river rafting guide company, a historical risk analysis yields an understanding of
areas that will likely cause problems and provides an opportunity to put preventive mitigation
strategies in place before a boat goes in the water. Current risk analysis is used as events unfold to
make course corrections or, if a problem arises, to limit the severity of the adverse event. Guides on
the river use their past experience and knowledge to get the raft oriented correctly as they
approach a riffle or potentially dangerous section so that they won't flip their raft, damage the boat,
or worse, get a customer tossed into the water. Unfortunately, not everyone has a guide in their
boat, as explained in a true story told by Microsoft test architect David Catlett.

Rafting the Rogue River

When | was young, some friends had told our family about a section of the Rogue River in
southern Oregon that was supposed to be a relaxing afternoon run. They mentioned that
there were a few snags in the water to avoid, but otherwise it was a straightforward float.
They failed to mention exactly where the snags were located, but it was more of a side
comment anyway, and because we'd already successfully navigated the Class Il Dunn
Riffle in Hell Gate Canyon many times, we figured the trip would be nice and easy.

After about 30 minutes, we rounded a bend and got caught up in a swiftly moving section
of water. Our relaxing afternoon ended as we realized we were lined up on the wrong side
of the river coming out of the bend and were headed straight toward a six-inch log that
was jutting three feet out of the water. Our raft was being pulled toward it like so many
doomed spaceships that get sucked into black holes in B-rated movies. My dad
desperately tried to paddle us around the projecting tree trunk, but it was too late. The
current was too strong, turning the raft sideways and causing it to be bisected by the log.
Being a rubber raft, it buckled, the rapidly moving river bending it around the solidly
placed log. Being a well-inflated rubber raft, it bent for a few seconds and then violently
returned to its original shape, catapulting me and my entire family out and into the cold
water. Somehow my brother ended up in knee-deep water and was able to hold his own,
keeping the raft in place while my dad clambered back aboard.

Unfortunately for me, the holding of the raft had unintended consequences. My mother
and | had taken the brunt of the rubber-band effect, being tossed buns-over-teakettle,
landing in the water upstream from the raft and immediately being pulled downstream
underwater. My mom was immediately swept around the raft and continued downstream.
| was not so fortunate and, not having a life jacket, | was sucked directly under the raft
and up against the log. Underwater, | was so disoriented from being tumbled by the
current, | didn't know whether to scratch my watch or wind my bottom. | tried to surface,
but the top of my head hit the underside of the raft. After a few agonizing moments, my
10-year-old brain finally figured out | was stuck under the raft, and in a panic-induced
feat of super strength, | fought my way back upstream, finally breaking to the surface.

Despite being caught off guard, we weren't totally unprepared. Before we put the raft in
the water, my dad had reminded us that, although we didn't have life jackets for this trip
(remember, this was supposed to be an easy float, plus this was before life jackets were
required), we did have flotation pads, just in case. He also imparted some words of
wisdom in case anyone fell out of the raft. As | surfaced, | grabbed a flotation pad that
was fortuitously floating within arm's reach. | also happened to grab the plastic bag that
held our dry clothes and more important my dad's wallet. The current quickly pulled me
downstream away from the raft. | started to try and fight my way back to the raft, but
then recalled my father's instructions for unplanned departures from the rubber boat:
Relax, point your shoes downstream, bend your legs to fend off any rocks and trees in
the river, and let the river take you down to a calm spot where you can be recovered

without having to fight against the water and riverbed.

After being knocked around a bit when the Rogue took me under the branches of a half-
submerged snag-of-a-tree, | was reunited with my dad and brother. Alas, as | was pulled
up into the raft, the plastic bag | had managed to hold onto, even after being battered by
the tree, slipped from my grasp and immediately disappeared. My thoughts of being
deemed a hero were dashed. Further down, we rescued my mother, who had flawlessly
executed the risk mitigation instructions doled out by dad. We survived, albeit with a few
bumps and bruises and a missing wallet. In the future, we decided that regardless of how
easy someone said a stretch of river was, we'd always wear life jackets and put our
valuables into a waterproof and floatable container.

Identifying Risk Analysis Phases
The Rogue River rafting trip experience goes through all the phases of risk analysis.

e Historical risk analysis was done as previous experiences as well as wisdom received by
supposed experts, which were taken into account as the family prepared for the trip. Before
they even put the boat in the water, they had a certain amount of risk mitigated, which was
enough that they felt comfortable putting the boat in the water. If they had gotten to the
launch site and had seen a waterfall downstream, they probably would have skipped the
whole thing and gotten hamburgers and a milkshake at the local drive-in.

e Current (no pun intended) risk analysis was done as the family floated down the river. As
soon as they were flipped out of the boat, they recognized the risk they were in, some at a
higher level than others. Each person initiated a risk mitigation strategy commensurate
with the situation they were in and in the end survived, except for the wallet, which
probably became barnacle food in the Pacific Ocean near Gold Beach, Oregon.

e Afterward, they also evaluated their historical risk analysis model and, finding it lacking,
made adjustments that lowered the risk. They reduced the likelihood and severity of future
adverse events by planning on always donning life jackets and bringing along a dry bag for
future river runs.

As soon as developers commit code to the compiler, it's like putting the raft into the river: risk is
incurred and off they go, inexorably drawn downstream to their final destination. Just as with the
tree trunk in the river, you often come upon snags during software development.

Good river rafters know the dangers of rafting in general. They know the river they are on and its
specific dangers, and they know what to do when bad things happen. They also know when not to
repeat a mistake. Water safety tip of the day: always wear a life jacket on a river, no matter how
calm its reputation. Good software engineers similarly know the risks that are part of any software
project, how to mitigate those risks as the project life cycle proceeds, how to handle snags in the
development process, and how to learn from their mistakes. At least that's the hope. The reality is
that new engineers come on board and veterans move on, so capturing the collective knowledge of
an engineering staff for posterity is crucial. Documenting this information is discussed further in
Chapter 14, "Prevention Tab," and a good risk analysis system incorporates wisdom gleaned by
using such techniques and ensures that similar mistakes are not made as changes are made to the
software during the implementation, verification, and maintenance phases.

Understanding the Artifacts of Churn

As developers make changes, the artifacts of these changes are what can be used to determine risk.
Continuing the archaeology metaphor, Microsoft test architect David Catlett describes these artifacts
of churn using the acronym CAIRO, which stands for characteristics, amount, impact, reason, and
ownership. These are the data points that need to be dug up to understand the type of risk incurred
with churn.

e Characteristics These are code characteristics that are proven indicators of risk associated
with the location of the code that is changing. Some typical metrics are size, complexity,
number of dependencies, historical failure proneness of the module or similar modules if it's
new code, and current number of discovered defects.

e Amount This is the amount of change in any characteristic of the code. Usually this is the
number of lines of code that have been added, changed, or deleted and the amount of
change relative to the size of the source file, function, or binary. It also includes changes in
any other code characteristic, for example, in the number of dependencies or in the amount
of complexity compared with the version of the software before the changes were made.

e Impact It is also important to understand the impact of the changes. For example, looking
at which functions and external applications call into the changing code, how the changing
code fits into end-to-end user scenarios, how many existing tests (if any) hit the churning
code, and how the changes affect quality attributes such as security, performance, or
internal library usage policies. These are all important measurements of impact.

e Reason Knowing the reason why the code is changing is important in determining risk. The
reason for change should be considered differently according to how far along the project
has progressed. For example, early on in a product's development, the addition of features
or code redesign work should be the main reason for code churn. As the product gets closer
to being completed, the reason for churn should shift exclusively to defect fixes.

e Ownership Knowing who is making a change is important in determining risk. For example,
it is critical to know when a junior developer is making code changes in order to instigate
more extensive mitigation strategies, such as having a code inspection with more senior
developers. Ownership also includes the test owners and specialty owners, for example, a
localization owner. Ownership extends to anyone who is signing off on the changes and has
responsibility for the quality of the change.

Having a system in place that automatically compares current risk levels against historical levels
goes a long way in digging up the artifacts of churn, which in turn helps show where the project is
headed and when it has arrived at the final destination. Going through the exercise of identifying
risk and coming up with risk mitigation strategies to reduce the risk is an important aspect of
project management. It is also important to adjust the risk level when the risk mitigation strategies
have been executed. For example, a highly complex module may indicate risk, but when the
engineering team does a full-scale code inspection and all the tests for the module are passed, the
risk has been significantly lowered. The final risk ranking should reflect the mitigated risk.

In software development, risk analysis is an exercise in understanding the past to prevent defects in
the future. It helps to focus the risk mitigation activities in areas of highest risk to find defects
before the customer finds them after release.

Benefits of Risk Analysis

Knowing the risk level at any given point in the product life cycle provides critical information to
engineers and project managers alike. It helps them focus resources on the most risky areas of the
software in ways unique to each role.

Benefits for Engineers

For developers, knowing which areas of code are at the highest risk helps focus code review efforts
and aids in refactoring or redesign decisions to help reduce the likelihood of defects occurring. For
testers, knowing what changed and the risk level incurred by the change can help prioritize test
efforts. If testers must run through only a small number of tests to test the changing code, they've
just saved an enormous amount of time over the course of the project.

For example, one maintenance engineering team at Microsoft would take two full weeks to do test
passes each time code changed. This was a very expensive process, but because they weren't sure
of the impact of the changes on the system as a whole, they had to retest the entire system, just to
be safe. They implemented a risk evaluation system based on historical risk analysis to help them
prioritize their test efforts. Initially, they took a very conservative approach by ranking all the

binaries in their software package from riskiest to least risky based on the CAIRO model of risk
evaluation. Then, instead of retesting all of the binaries, they dropped the bottom 30 percent "least
risky" binaries from their test pass and focused their efforts on the remaining binaries.

They also put in place a program to continually tune their risk prediction tools so that if they
guessed wrong and one of the binaries they didn't test had a customer-reported regression, their
risk prediction formula learned from that and kept improving over time. This helped their
engineering efforts be much more efficient, significantly reducing the cost of a full regression test
pass.

Benefits for Project Managers

For project managers, a risk management system that reports risk level before the software is
distributed is very helpful. By knowing the risk level of each change, decision makers can ensure
that the right mitigations have occurred. This can be as formal or informal as the team needs.

Another important example of assisting project managers is in the area of partner notification.
When an interim build of software is analyzed for risk using the CAIRO model, its potential impact
on key partners is assessed. The most affected partners can then be given a prerelease copy of the
software to ensure that it still works with the partner software. Oftentimes, project managers simply
make the build available to all partners, but those partners often don't take the time to test the
software because they aren't informed as to the level of risk to their own software. When a custom
risk analysis is created for each partner, the partner can then better manage their own time and
resources for integration testing. It also helps project managers specify from whom they need to
gather feedback, focusing on the most affected partners instead of all the partners.

Similarly, if customer scenarios have been profiled and tied to specific functions in the software,
when those functions change, a list of potentially affected customers can be generated and the
project managers can target specific customers for feedback on prerelease copies of the software so
that the customer can ensure that the scenarios they care about are working as expected.

Understanding the current risk of a project as changes are being made is very beneficial to both
engineers and project managers. It provides data to support the decision-making process and helps
everyone focus limited resources on the riskiest areas of software.

Understanding Risks

In the end, data is just data. The data must be analyzed intelligently to determine the correct
course of action. One of the biggest risks in a risk analysis system is in producing data that no one
knows what to do with. Metrics must answer a specific set of questions that are focused on
achieving a specific goal. Collecting data for data's sake can cause confusion and often leads to long
debates about veracity (the data is just wrong) and applicability (everyone wants an exemption at
some point and often they have good reasons for this). Too much data muddies the waters and
does not provide the clear answer to a clear question that is tied to a clear goal.

Having what Steve McConnell calls a "Risk Officer” in his book Rapid Development!!! or what the
financial and insurance worlds call an actuary is crucial to the correct interpretation of the data. A
software actuary needs to be a senior member of the staff, and although this person may have
other roles, to be successful the software actuary must have the full support of all decision makers.
The actuary's job is to interpret the data correctly, make accurate predictions, and continually
modify and reanalyze risk indicators so that the data and the predictions become even more
accurate. Without proper interpretation of data as well as knowledge of how to prove or disprove
which data points are good indicators of risk, the risk analysis can point to more boogiemen than
bugs, setting off fire drills that frustrate and sending up red flags that turn into red herrings.

[steve McConnell, Rapid Development (Redmond, WA: Microsoft Press, 1996).

Implementing Risk Analysis

Risk analysis involves collecting and analyzing the artifacts of churn: CAIRO. It can be broken into
two phases: (1) creating and maintaining the risk prediction model based on historical data and (2)
applying the risk prediction model during a project. The following sections briefly discuss proving
which code characteristics or metrics are good indicators of risk and then how to use them along
with the amount, impact, reason, and ownership information to create a risk prediction model that
can then be used as part of a risk analysis or assessment tool set. This type of tool can then be
used during the implementation, stabilization, and maintenance phases of a software project to
analyze the risk involved with changes as they occur.

Creating a Risk Prediction Model

Creating a risk prediction model starts with identifying artifacts from each area of the CAIRO model
that may be good indicators of risk. Then you must determine whether those chosen metrics are
really true in a code base that is similar to the code base that will be created as part of an upcoming
software project. Typically, the most recent version of software is used as the historical data for the
next version of the product. In cases where the software has no previous version, the following
subsections contain some standard industry metrics as well as some practical suggestions on good
starting points for creating a risk prediction model.

Characteristics: ldentifying Code Characteristics

When trying to uncover which code characteristics are going to be good indicators of risk for a
software project, it is important to remember that one size does not fit all. Various studies have
shown a number of existing size and complexity metrics to be good indicators of risk. What's
important to note is that many of those studies were done on a certain kind of code, for example,
telecommunications software written in C, which may vary wildly from the environment and purpose
of your software project.

For example, researchers at Microsoft examined the Microsoft Windows XP and Windows Server
2003 code bases using some traditional size and complexity metrics and found that the largest
functions actually had fewer defects per thousand lines of code (defects/KLOC) than did medium-
size functions. In the case of a popular complexity metric, the most complex functions also had less
defects/KLOC than did their medium-size counterparts. The researchers also found that binaries
that were fixed the most in service packs were ones that had the most calls into and out of the
binary, what is referred as fan in and fan out. Another metric that positively correlated to a high
number of defects was what Microsoft Researchers Brendan Murphy and Nachi Nagappan called
"late churn," when binaries were changed close to when the operating system was shipped. Their
research showed that code that was changed at the last minute had to be updated afterward.

In general, a good place to start is with some of the standard size and complexity metrics.
Certainly, if it is easy to predict which modules are going to be fault prone with these metrics, use
them. Other metrics that may prove useful are fan in and fan out metrics, which functions are called
the most, functions used in key customer scenarios, and functions related to key quality attributes
such as security and performance.

Proving Metrics

Establishing which metrics are good indicators of risk means defining exactly how risk is measured
in a specific context. Traditionally, defects/KLOC, or the number of defects per one thousand lines of
code, has been used as a measure for indicating fault proneness in a single source file or a group of
source files that together are built into a single binary. At this level, you can predict risk at the
source file or binary level, but not at the function level. Oftentimes, it is more useful to understand
risk at the function level instead of the source file or binary level. The ability to predict risk at this
lower level is important because this is where real action can be taken. For example, by being able
to rank the functions in a binary by risk, code reviews can be focused on the riskiest functions first

and testers can ensure that their tests cover these riskiest functions. Many times, these riskier
functions are the most complex, which can lead to testability issues. By identifying these functions
early on, testability can be improved earlier as well. (See Chapter 6, "Improving the Testability of
Software.")

By studying the characteristics of the functions that contained the highest defect density (or defects
per lines of code, or LOC, because hopefully most functions aren't thousands of lines of code) and
doing the risk analysis at a more granular level, you can predict risks at a more granular level. As it
stands, most risk analysis systems usually measure defect density associated with all the source
files in a single binary and study the characteristics of the binary as a whole instead of individual
functions inside the binary. In any case, the point is to first find out where the defects are coming
from and then search for correlations with metrics in the code that have high defect densities
compared with modules that have low defect densities. Correlations should be "meaningful,” as
Norman Fenton and Shari Pfleeger describe in the second edition of their book Software Metrics: A
Rigorous & Practical Approach,™ or "causal," as Stephen Kan describes in the second edition of his
book Metrics and Models in Software Quality Engineering.!

W Norman E. Fenton and Shari Lawrence Pfleeger, Software Metrics: A Rigorous and Practical
Approach, 2nd ed. (Boston: PWS Publishing, 1997).

[l stephen H. Kan, Metrics and Models in Software Quality Engineering, 2nd ed. (Boston: Addison-

Wesley, 2003).

Several approaches can provide accurate and revealing information about whether a particular
metric or combination of metrics correlates with a higher defect density. Entire books are written
about this subject, including the two just mentioned. Kan provides some practical advice on proving
metrics in his book:

It is important to have empirical validity established before the team decides on an action plan. By
empirical validity we mean a good correlation exists between the selected metrics and defect
rate...and a causality can be inferred. To establish a correlation, data gathering and analysis are
needed. In the case that statistical expertise is not readily available to perform complex analysis,
simple techniques...coupled with good brainstorming by team members will be just as effective.
Causality can also be established by individual defect causal analysis.™

U Stephen H. Kan, Metrics and Models in Software Quality Engineering, 2nd ed. (Boston: Addison-
Wesley, 2003), 329.

The simple techniques that Kan describes are tools like scatter diagrams and simple tables. Figure
8-1 and Figure 8-2 are two examples of scatter diagrams.

Figure 8-1. Scatter diagram with no correlation between
metric and defects/KLOC

[View full size image]

hMetrica

200

180

160

140

120

100

8O

&0

40

20

10

15 20
Defects/KLOC

25

35

Figure 8-2. Scatter diagram with strong correlation

MetricB

200

180

180

140

120

100

80

40

20

between metric and defects/KLOC

[View full size image]

15 20

Defects/KLOC

25

30

35

40

In comparing Figures 8-1 and 8-2, it is clear by simply looking at the data that there is no
correlation between MetricA and defects in Figure 8-1, but a strong correlation between MetricB and
defects in Figure 8-2. As the value of MetricB goes up, so do the number of defects. This establishes
a high correlation.

The next step is to use a causality discovery technique such as described in Chapter 11, "Root
Cause Analysis," to determine how meaningful this correlation is: whether the reason the defect
density is high for a particular binary or function is really that the metric is high. For example, a
function may be measured as complex, for example, by using McCabe's Cyclomatic Complexity™
metric, and it may have an unusually high defect density, but a root cause analysis may show that
the reason for the high defect density is actually that the function has a large number of external
dependencies and the high complexity value may be a coincidence. The only way to know this would
be to understand the true cause of the defects and use that as a way to avoid noncausal,
nonmeaningful, coincidental correlations between defects and a particular metric.

W wikipedia, "Cyclomatic Complexity," http://en.wikipedia.org/wiki/Cyclomatic_complexity.

After a code characteristic or series of characteristics proves to provide a nicely diverse portfolio of
risk indicators, it can then be used to monitor the risk of new and changing code as the project
progresses.

Amount: Tracking Churn

Tracking the amount of churn is straightforward and should be done in terms of the lines of code
added, changed, and deleted. Separating the churn into these categories helps in understanding the
type of development activity happening. Generally speaking, new code has a higher risk than
changed code does, and changed code has a higher risk than deleted code does. The only time
these relative risk weightings change is if there are dependencies on the changed or deleted code.

Code churn relative to the size of its binary or source file is important in understanding the scope of
the changes that are happening. This is particularly important to note at the beginning of a project.
Depending on the project, at the beginning it should have more new code than changed or deleted
code. If the project is primarily a refactoring of existing code, changed and deleted code churn
activity is more common.

By looking at the size of the changes relative to the total size of the project, one can judge the
scope of effort. In Windows Vista, if an existing code base that was moved forward from Windows
XP was changed more than 30 percent, the effort was considered to be equivalent to a new feature
and was subject to the same requirements as new code.

As the amount of churn winds down toward the end of a project, it's important to track the total
amount because relative amounts are much harder to understand. For example, it's easier for most
people to understand a three-line code change versus a 0.0045 percent change. At the end,
because any change can be risky, tracking the total amount is important because it provides much
more clarity, which in turn makes the risk easier to interpret. It's also important not only to
understand how much the code is changing, but what kind of potential impact the churn may have
on the software as a whole.

Impact: Understanding the Effect of Changes

Code characteristics are just one way to predict risk. Knowing not only what changed but the impact
of the changes is an important part of assessing risk. Viewing impact from function, scenario, test,
and quality viewpoints, as described in this section, gives a diverse portfolio of risk factors that
helps the overall risk assessment be more accurate.

It's important to look at how the software components interact in the entire project. This is
particularly important if library or utility functions or modules are commonly reused, or if

functionality is layered and reused. For example, in an operating system, low-level calls that
interact with hardware are wrapped in library functions that are then called by higher-level services
and applications (see Figure 8-3). Often, functions are wrapped again and then exposed to even
higher-level services and applications, up and up many layers, until a word processor or
spreadsheet application or Internet browser sits at the top, consuming these functions to provide a
useful experience for the user. Clearly, a low-level change could potentially have an impact all the
way up through the layers for anyone that made a function call whose call graph eventually called
the changing function.

Figure 8-3. Dependency graph

Motes Writer Painter
Application Application Application

|

SaveFile

~

Filewrite

~

_filewrite

~

_fwrite

Something as simple as adding or changing a return code can wreak havoc on a poor, unsuspecting
application that sits at the top of the stack. For example, say a developer discovers a defect in a
low-level function. The function incorrectly returns error code 5 when a file the function writes to is
in use by another user, as in the _fwrite function in Figure 8-3. Being a good developer, the
developer switches the error code to the correct value of 32, writes some quick tests to make sure it
works, and then moves on. Meanwhile, the poor, unsuspecting application that uses a high-level
function that calls another function that calls another function that eventually calls the changed
function (see Figure 8-3) now shows this entirely unhelpful message: "An unknown error (32)
occurred. We have no idea what this means. Cry in your coffee until one of your cubicle mates
consoles you, and then press Abort, Retry, or Fail to continue."

If the developer had just left well enough alone or, at a minimum, had known to contact the high-
level application that relied on the low-level disk function, the user may instead see this infinitely

better and proscriptive error message: "A known error (5) occurred. This means another person,
logged in as 'Joe,' has the same file open. Feel free to shout over your cubicle wall and ask 'Joe' to
please close file 'meeting notes' so that you can get some work done. Thank you and have a nice
day." Tracking those kinds of dependencies is how functional or call graph impact can be calculated.

Identifying Function-Level Dependencies

Usually, call graph or profiling tools are used for performance optimization analysis or refactoring,
but they can also be used to get function-level dependencies that can then be placed into a
database. A simple table that has every function in a binary along with a list of both internal and
external functions that it calls (its fan out list) provides a data source that can then be used to
determine the functional impact of a change (see Table 8-2). It can also be used to calculate the fan
in counts of a function.

Table 8-2. Function Fan Out List

Binary Function Binary Fan Out Function Fan Out
binaryl.exe main binaryl.dll functionB
binaryl.exe functionB binary2.dll functionl
binary2.dll functionl system.dll sysfunctionX
binary2.dll function2 system.dll sysfunctionY

By doing a simple reverse lookup, searching for any instance of a function in another function's fan
out list, both functional impact and fan in counts can be garnered for use in risk assessment. For
example, if sysfunctionX were to be changed, functionl in binary2.dll, functionB in binaryl.exe, and
the main function in binaryl.exe are all potentially affected by the change in sysfunctionX. This
would be a riskier change than, for example, changing functionB in binaryl.exe, which is only called
internally by the main function. In the case of functionB, there is only one binary that is affected
and most likely only one developer and test team. In the case of sysfunctionX, potentially many
teams are involved in ensuring that the change has been validated. Other types of impact are also
important to note: customer scenario, test, and quality attribute impact.

Identifying Customer Scenario Impact

Customer scenario impact can be an outgrowth of the functional impact. Because scenarios boil
down to a series of function calls, it's straightforward to associate a scenario with a group of
functions that are used to complete the scenario.

For example, in Table 8-3, a series of functions and scenarios are linked together in a mapping
table. Anytime one of the functions in the function table changes, it is a simple lookup to see which
scenarios are affected. Depending on the priority of the customer scenario, the risk level may be
lowered or raised. Depending on the number of scenarios and customers that are affected, the risk
level may also be lowered or raised. For example, if the binaryl.dll function2 were changed, it
would potentially affect two high-priority scenarios (Scenariol and Scenario3) and two separate
customers. In this case, a change to function2 would be a relatively higher risk than a change to
function1 would be because it affects more high-priority scenarios and customers than if functionl
were to be changed.

Table 8-3. Scenario-to-Function Mapping

[View full size image]

FunctionTable
ID |Binary Function
1 binary1.dll function]
2 binaryl.dll function2 FunctionScenarioMapping
3 binary2.exe functionA ID | FunctionlD ScenariclD
4 binary2.exe functionB 1 1 2
2 2 1

ScenarioTable 3 2 3
1D Name Customer Priority 4 3 3
1 Scenariol Customer] 1 5 4 3
2 Scenario? Customer] 2
3 Scenario3 Customer2 1

Mapping which functions are associated with which scenarios can be accomplished by augmenting
the call graph database described previously. Lists of functions are associated with a scenario like
the fan out list for a function. This makes it easy to query the database to find a list of scenarios
that are affected by a change. Matching scenarios with the functions they call can be done through
code coverage or other operational profiling tools, or by simply having the code beacon that
information to a log file as the scenario is being run. The log file can then be the basis for the
customer scenario database.

After the mapping is made between a customer scenario and the functions that are called to
complete the scenario (as in Table 8-3's FunctionScenarioMapping table), every time a function
changes, the database can be queried to see which scenarios are potentially affected by the change.
This is one important way to help predict risk because it brings in the customer perspective. It also
further assists in focusing test efforts, ensuring that the affected user scenarios are well tested.

Identifying Test Impact

Another way of judging risk through impact is by looking at how many tests have to be rerun when
a change is made. By profiling the functions that a test hits, test impact can be gauged in a way
that is similar to customer scenario impact. However, it is better to know not only which functions
are being called, but how much of a function is being called down to the exact lines of code that a
test hits, to get an accurate risk assessment.

This type of detailed understanding of how effective a test is in exercising code can be obtained
through a code coverage analysis tool. This will tell not only if a function is hit, but how much of the
function in terms of line coverage.

By knowing exactly which lines of code a test traverses, one can know if a particular change in a
function will be hit by an existing test. Assuming a reference database is created that documents
exactly which functions and lines a specific test hits, it is again a simple query to get a list of tests
that hit the changing code, if any.

There are two key risk analysis points with test impact. The first is how many tests hit the changing
code. This is a good judge of impact because it will quickly be apparent how extensive the changes
are from a test perspective. The second is how much of the changing code does not have any
existing tests. If there is new code, there may not be an existing tests that hit the code. This code is
at a higher risk than code that has hundreds of tests that hit it because there's no verification
present. Allowing untested code to be integrated with the rest of the project is one of the highest-
risk activities a developer can do. It must be watched for carefully. By using a code coverage
system, the team can be automatically alerted to this kind of behavior.

Identifying Quality Attribute Impact

There are often quality ramifications when changes are made. Most of these are mitigated by the
testing that follows the integration of changes into a project. However, there is an opportunity to
flag potential issues with specific quality attributes such as security, performance, localization
impact, or even usage of the correct dependent function calls. For example, during the development
of Windows Vista, there was a big push to convert all code in Windows to use a new set of "safe
string" related functions instead of older string functions that had proven to have security defects.
After all code was converted, in order to ensure no new piece of code accidentally called any of the
banned functions, a "quality gate" was put in place to scan code changes and ensure it did not call
any of the banned functions. This is a great example of a practical application of analyzing the
impact on quality, specifically security, that changes can make. Used in combination with the call
graph and scenario impact, one can tag certain sets of functions as either positively or negatively
affecting some quality attribute such as security, performance, or localization. Similarly, changes
can be scanned for use of incorrect or old methods. Sometimes old dogs need to be taught new
tricks whether they like it or not, and this is a great way to verify those old dogs don't revert back
to their old ways and use library function calls that shouldn't be used. Understanding how changes
affect the quality attributes of software is an important part of a complete risk analysis and can
prevent a lot grief by detecting any potential problems right after the code is changed and before it
gets integrated with the rest of the software project.

Aside from the characteristics, amount of churn, and impact of a change, knowing why a change is
happening is also an import part of the risk prediction model.

Reason: Understanding Why a Change Is Made

There are typically three reasons for project code churn: New code, defect fix, or redesign. Early in
a project, the main reason for churn should be to add new code or redesign legacy code. As the
project proceeds, changes should be more and more in the defect-fixing camp, until ultimately, the
only changes being made at the very end of a project should be defect fixes.

The horror stories of feature creep are all too common: those last-minute features that get jammed
into a project, wreaking havoc for months on end until finally being canceled, the only memory
being a slipped ship date and maybe a few pink slips. By tracking the reason for the churn, you can
potentially eliminate or at least unveil feature creep late in the project.

One way to track the reason for changes is to have a count of the number of defect fixes that are
part of a particular churn payload. By looking at the ratio of defects fixed to how many lines of code
have changed versus how many new lines were added, you can usually quickly discover if a new
feature is being added or if defects are being fixed. For example, in Table 8-4, it's easy to see that
binary3 has clearly had a new feature added because there's no associated defect with the code
churn and the churn is all newly added code.

Table 8-4. Number of Defect Fixes for Churned Code

Binary LOC Changed LOC Added LOC Deleted Defects Fixed
binaryl 50 5 2 2
binary2 50 200 0 1
binary3 0 500 0 0

binary4 0 200 150 35

On the other hand, binaryl can be categorized as being a defect fix. Even though there is some new
code being added to binaryl, it is a relatively small amount and the churn has two associated
defects.

Sometimes it's hard to tell if churn is related to either a new feature or strictly a defect fix. In the
case of binary2, although there is a defect associated with the churn in the binary, there is a lot of
new code. In this case, it's important to query the owner of binary2 to uncover the mystery. It
could be that to be truly fixed one of the defects required a code redesign, hence the new code, or it
could be a case of trying to sneak a new feature in under the guise of fixing a different defect.

With binary4, it's clear that a portion of code was completely redesigned, perhaps because the
previous method in the binary was so defect ridden that there was nothing left to do except rewrite
it.

Having access to the data in these cases makes it easier to start asking questions and brings
greater transparency to the project. Note that although it could actually be OK for both defect fixes
and new features to be added at the same time, it does increase the risk and should be taken into
account when evaluating the overall risk of a particular software release. Knowing the reason for the
change is important, and although there can be some level of discernment based on the type of
churn (changed versus added or deleted), it's also important to get the reason straight from the
horse's mouth: the owner.

Ownership: Knowing Who Owns a Change

The owner of churn can be the developer who made the actual code change or the tester who is
responsible for testing the change or anyone who has some burden of responsibility for ensuring the
quality of the change. Clearly, risk varies depending on the experience and talent of individuals. The
usual way of mitigating risk is to make sure that people who either are less experienced or have a
poor track record have a more senior person or persons review the work being done. Having subject
matter expert review owners goes a long way in mitigating this kind of risk. For example, in
Windows Vista, any change made late in the ship cycle was reviewed by the core architecture team
and then by the project management team. By making sure both the technical and project-related
requirements were being met by designated reviewers, the quality of the code changes was very
high.

Having a report that can quickly tell the owners of the churn who they have affected goes a long
way in fostering better cross-group communications, which is particularly important in large
projects. This type of report, such as the one shown in Table 8-5, is important to have as part of
any risk analysis tool set because it makes it easier to take the next step and contact the affected
owners to ensure that they have mitigated the risk incurred by the churn.

Table 8-5. Owners Affected by Churn Report

Churned Owner
binaryl Tim
binary2 Tim
Impacted Owner
binary3 Francie
binary4 Josh

The CAIRO model provides a good background for understanding what the indicators of risk related
to code churn are. It also highlights the need to account for not only code characteristics that

provide historical failure proneness but the amount, impact, reason, and owners of those changes.
Each area is important in getting a broad set of risk factors that then helps make the risk prediction
more accurate. Like a diverse portfolio of investments that brings stable and predictable returns
over the long haul, a diverse set of risk factors also provides a solid risk prediction model that can
be counted on to help drive better decisions and mitigate risk in the right areas and in the right
way.

Applying a Risk Prediction Model

After a set of risk indicators is identified and proven to be good predictors and to draw from all parts
of the CAIRO model, data for each indicator must be collected in an automated fashion on a regular
basis, for example, evaluating all changes that have occurred since the previous day or the previous
week. Data collection can be a complicated process and depends heavily on how source code is
stored, compiled and built, and distributed. It also depends on having tools that can extract the
CAIRO data from a variety of data sources on a regular basis and then present the data in a format
that generates useful reports. Table 8-6 is one example of a high-level report that gives a good
sampling of CAIRO artifacts from which to do a risk assessment. In this example, the highest-risk
binary is binary2.dll, which has high risk indicators across all rows.

Table 8-6. High-Level CAIRO Report

Binary compared to previous week binaryl.dll binary2.dll notes.exe

Total size 500 10,000 250
Complexity 22 54 8
Historical fault proneness 0.45 0.84 0.24
LOC Changed 10 500 2
LOC Added 2 950 (0]
LOC Deleted 1 100 (0]
% Churn 2% 15% 1%
Function Impact 3 128 0
Scenario Impact 2 25 1
Test Impact 10 234 1
Defect Fix count 2 18 1
Dev owner Sue Tomika Erik
Test owner Aramis Alan Jan
Senior Reviewer Bill Bill Bill

Data for each row, with the exception of the calculated % Churn row, must be gathered, preferably
automatically when changes are made. Part of the issue with some existing tools used for risk
assessment is that they gather only a fixed set of code characteristics. This provides only a subset
of CAIRO data and makes such tools insufficient for a robust risk prediction model. The other
challenge is that some artifacts such as ownership information are sometimes never stored in a
format that is programmatically accessible.

In practical terms, to get a risk prediction model working requires some development work. Even if
every piece of data is stored somewhere in a programmatically accessible location, you still must

use a tool that gathers that information into a single place to generate reports and for analysis to
take place.

The Windows Vista Risk Analysis team created a tool that quickly aggregated data into a single
place and then extracted, transformed, and loaded (ETL) the information needed for the risk
assessment into a Risk Analysis Microsoft SQL Server database. Depending on the audience, charts,
e-mail, and Web-based reports were then generated using the stored artifacts of churn for each set
of daily changes made in Windows Vista. See Figure 8-4.

Figure 8-4. Risk Analysis system

[View full size image]

Defect
DB

Risk Analysis DB

Data _/_\

Aggregation
and ETL

Binary
Share

Web-based

Dependency Reports

Ref. DB
< emall
Binary

Share Impact
< Motification

< Charts

Each time a new build of Windows Vista was completed, the resulting binaries were copied to a file
share. A series of tools was then run against the binaries to extract the CAIRO artifacts of churn.
Some of the information was contained in the binaries themselves, such as specific code
characteristics and the amount of churn compared with the previous build. Other information, such
as the impact of the changes, reason, and owner, was gathered by looking up the information in
separately maintained databases. For example, the owner of a binary was stored in one SQL Server
database and the defect fix information that described the reason for the churn was kept in another
database. The end result was the ability to see all the risk indicators in a single place and be able to
make informed decisions from that data.

It is also important to store the details that make up the reports and not just the high-level CAIRO
information as shown in Table 8-6 because different users of the data require different levels of
detail. For example, a project manager may want to know only the overall churn trends to get an
idea of whether progress is being made on the project as a whole, whereas testers may want to
know precise details down to the function level on which functions are changed and which tests are

affected by the changes so that they can go run the tests. Developers may need to know precisely
who is the affected owner of a change they are making so that they can send an e-mail message to
coordinate their efforts.

For example, Table 8-7 includes a more detailed report on the changes that occurred in the
binaryl1.dll binary from Table 8-6. The detail is down to the function level, specifying the functions
that were changed and how much they changed. Additionally, there is information on the affected
functions, including which functions were affected and the owners of the affected functions. Test
and scenario impact details are also available along with the names of the test owners and the
actual customer associated with the affected scenarios.

Table 8-7. CAIRO Impact Detail Example

[View full size image]

Binary Function | Size Complexity | LOC LOC |LOC Functions | Tests Scenarios
Changed | New |Deleted |Impacted | Impacted | Impacted

binaryl.dil functionl 250] 5 1 1 F) ¥y o

binaryL.dil functond 250 10 5 L] 1 o 1 1

Binary Function Impacted

Impacted Impacted Impacted By Cwnor

binary2 exe FunctionA | binaryl.ditfunctionl | ken

binaryZexe | FunctionB | binaryldifunctionl [ken

Binary Function

Changed Changad Impacted Test Tast Ownar
binaryl.dil funectionl Testl COnnGE
binaryl.dil functionl Test2 MArkLa
binaryl.dil function2 Test2 marissa
Binary Function

Changed Changed Impacted Scenario | Customer
binaryl.dil function Print ing Sales Report | Acmae

Watering
Cans

This level of detail is needed to make the information truly actionable. Providing actionable data as
part of a risk assessment is critical to its success. Some actions that can be taken from this data are
for the testers to run tests on the affected scenarios and ensure that they are passing. The
developer who has code that calls into the changing code should verify that his or her own code
doesn't also have to be changed to accommodate the changing code, for example, if the change is
in a function parameter, to make sure any function calls are changed to match the new function's
signature. It should be verified that the customer scenario that is potentially affected still works
according to the customer's expectations. It may even be useful to give the customer a prerelease
version of the build to ensure that the scenario continues to work in the customer environment.
Getting customer feedback early and often, particularly when a change in the software potentially
affects customers directly, goes a long way in mitigating risk before the software has officially
shipped.

Having information about where to focus test efforts, which scenarios to verify, and which partners
to consult is much of what can come out of a risk assessment. A more advanced risk assessment
system can provide information about areas of risk and what has been done, up to the current point
in time, to mitigate the risk. With each artifact of churn, there should be an associated mitigation
activity. ldeally, after the mitigation activity is completed, the results are entered side by side with
the risk factors. After both the risks and mitigations are lined up, it becomes clear what part of the
risk remains unmitigated.

Conclusion

Risk analysis of software is broken up into two activities: historical and current risk analyses.
Performing historical risk analysis results in a risk prediction model that can be applied to a software
project. Risk prediction models should contain a variety of measures that can produce an accurate
risk assessment. Current risk analysis uses the proven risk prediction model during the software
development life cycle to assess risk as changes are being made to the code.

During software development, the risk prediction model should take into account not only code
characteristics such as size, complexity, and historical failure proneness but also the amount of
churn, the impact in terms of function call graph, tests, and customer scenarios. The reason for the
churn, whether it is a defect fix, a new feature, or redesign, and who has ownership of the churn
are also important risk factors to consider. These CAIRO artifacts of churn should be measured with
each new interim version of the software and used to assess the overall risk.

High-risk areas should have targeted testing applied. When changes affect other code, tests, or
customer scenarios, the result should be better communication between affected developers,
testers, and customers. Mitigation strategies such as more stringent code reviews should go into
effect when less senior developers are making changes in high-risk code. The result of any risk
analysis should be that project decision makers are able to make data-driven decisions, asking
pointed questions on how the risk that comes with writing software has been mitigated so that it's
clear when the project is ready to ship.

Chapter 9. Using Simulation and Modeling for Organizational Innovation
All models are wrong but some are useful.
—George E. F. Box

Men's courses will foreshadow certain ends, to which, if persevered in, they must lead. But if the
courses be departed from, the ends will change. Say it is thus with what you show me.

—Ebenezer Scrooge

Modeling is the process of building a representation of how the world works. A model of the
software development process can help to explain a portion of the process, but by its nature a
model is incomplete and therefore incorrect. However, this does not mean that the model is not
useful. It is sometimes difficult to focus on the usefulness of the model rather than its limitations.
Nevertheless, the aversion that most software engineers feel to partial solutions must be overcome
to make use of the uncertain information inherent in software development.

Simulation is the process of using a model to predict what is likely to happen. It is the natural
extension of modeling, and like modeling, it is not a perfect solution. The future cannot be known
with certainty, and some software developers feel it is a waste of time to simulate, while others may
not want to hear bad news should the model predict schedule slips. However, as this chapter shows,
the effect of a decision can be predicted by using a useful model. By using simulation techniques, an
organization can build contingencies based on a range of possible outcomes rather than expecting a
single outcome associated with conventional black-and-white thinking. An organization can use
modeling to think in new ways not necessarily intuitively obvious. Think of modeling as "the
shadows of things that may be only" and not the things that will be. The intent is to find those
things that can alter the course of development and lead to the desired ends.

Modeling and simulation make possible a view of the world and an understanding of what is
possible. By using stochastic modeling, schedule, cost, and quality of the work product are
predictable. Additionally, you can gain an understanding of the sources of variance in a process and
the expected results of a process improvement technique. This chapter explains how to model a
process and then use the model to simulate the development process as it is and as it may be. It
provides several examples of how to build models from a limited understanding of a process and
how to use validation techniques to enhance the model. Finally, this chapter shows how to use the
model as a management tool to determine the process changes in which to invest and the reasons
an improvement project did not deliver the expected results.

Understanding Stochastic Modeling

The basis of simulation and modeling rests with an understanding of systems and the relationships
between variables of interest. From an early age, most people learn to break down problems into
their fundamental building blocks and then reconstruct the system from the composite knowledge.
This deconstructionist view is helpful when first attempting to understand a system, but it begins to
create a misunderstanding of "the Big Picture" view of the world.

Ludwig Von Bertalanffy, considered by many as the creator of systems theory, points out that "to
understand an organized whole we must know both the parts and the relations between them."™
Traditional science provides a means to understand the parts through deconstruction of the
problem. It is systems thinking that allows for the combination of the individual parts into an
organized whole. Regardless of how you break down the problem of software engineering, the
pieces must recombine in a way that re-creates the original system, or at least a reasonable
facsimile. Stochastic modeling is one means to garner an understanding of the whole.

[L. von Bertalanffy, General System Theory: Foundations, Development, Applications (New York:
George Braziller, 1976).

Because this is a practical guide to stochastic modeling, we do not define the exact mathematics.
Additionally, we take some liberties with terminology. Our intent from this point on is to provide you
enough understanding to create workable models that will be wrong but useful.

When analyzing data, you can perform regression analysis to produce an equation that somehow

relates two or more measured variables. The equation is often referred to as a model of the data.

For example, a relationship exists between a person's height, weight, and body mass index (BMI).
The following equation relates the three variables in a model for calculating BMI:

BMI = .1517 * Weight — 0.78 * Height

From this equation, you can calculate BMI using the mathematical model expressed in the equation.
The preceding model produces a discrete answer for every height and weight pair of variables; for
example, a person of height 68.5 inches and of weight 159 pounds has a BMI of 23.7. This
mathematical model produces a single answer for BMI from the variables of weight and height.

A statistical model adds to the basic mathematical model by introducing a degree of uncertainty. In
analyzing the data, the modeler also reports the standard error of the coefficients for both the
height and weight variables to represent the uncertainty of the calculation. An indication of the
significance of the variables is reported along with the importance of each variable. For example,
the BMI for someone of height 68.5 inches and of weight 159 pounds is 23.7 plus or minus 0.8 with
a confidence of 95 percent and a standard error of prediction of 81 percent.[? The result provides an
indication of the expected amount of variance one would see in a population of people 68.5 inches
tall. There is more information available to the user of the data.

@ The exact meaning of the elements of a statistical model is not important. You need only
understand that this type of model produces a measure of uncertainty along with a single result.

Stochastic modeling, also known as Monte Carlo analysis, is a technique used to solve equations
that are too difficult to solve using traditional numerical techniques. Stochastic modeling differs
from traditional statistical modeling in that a system of equations is not solved for an exact solution
but rather for a distribution function of possible solutions. According to the American Heritage
Dictionary, the word stochastic means "of, relating to, or characterized by conjecture; conjectural”
and is an excellent description of the result of the models that you can create. The process is one of
continual "what-if" conjecture. As such, the output of the modeling effort often involves more
questions than answers. However, when used correctly, you can gain an understanding of the
greater whole. In the BMI example, a stochastic model would likely add variables for gender, age,
general health, nationality, and so on, producing a system of equations that may or may not be
solvable by numerical analysis. Additionally, interactions between variables are easily modeled
stochastically; for example, if the BMI increases with age except when the general heath is
exceptionally good. Exceptions in the equation are difficult to handle but are a natural part of a
stochastic model.

In statistics, stochastic means involving probabilities or containing random variables. Although the
previous regression model for BMI uses random variables as well, the variables are given a discrete
value and the model is solved for a single solution with a range of expectation, such as 23.7 plus or
minus 0.8. There is no indication of how the population is distributed in the range. A stochastic
model provides a probability curve that indicates exactly how the population is distributed. The
primary unit of analysis that a stochastic model uses is the probability density function (pdf) if the
distribution is a continuous curve, or the probability mass function (pmf) if the output uses discrete
values.™ A stochastic process is one that involves probability equations that contain random
variables and a level of uncertainty in the outcome.

W A pmf gives the probability for discrete random variables, whereas the pdf must be integrated
over a range to determine the probability for a continuous random variable. The difference will
become apparent shortly.

The output of a model typically is a probability curve indicating the range of possibilities. In some
cases, it may be a set of possible outputs and the probabilities for each member of the set. The

inputs to the model will be one or more pdfs along with any known actual values. The input pdfs are
known as stochastic variables, indicating that a simulation of the model will replace the stochastic
variable with some form of a probability function. The model is a set of equations indicating how the
input data is transformed into the possible outputs.

To understand the elements of a model, consider the following equation:
Cups of coffee consumed = Demand per hour * time

The equation models the demand for coffee using the stochastic variable Demand per hour along
with an actual value for time. To simulate this model, a pdf for Demand per hour is necessary. To
develop the pdf, the modeler can measure the actual cups of coffee consumed in various time
periods, creating the pdf. Alternatively, the data may already exist (perhaps through sales receipts),
and the modeler can mine for the data. Finally, data may exist in other companies or in similar
domains, and the modeler can adapt this data to his or her domain. Adapting data from other
domains requires the extra step of verifying the predications of the simulation. It also introduces a
greater risk but does allow building the model even when little or no organizational data exists.

The model is only as useful as the data used to create the pdfs. The degree to which the data is
similar to future data determines the degree to which the model predicts future events. In the
coffee example, assume that sales receipts allow for building the pdf shown in Figure 9-1. The tool
used in this and other examples is called Crystal Ball by Decisioneering.[*] Most simulation software
produces similar information.

W see www.decisioneering.com for more information about Crystal Ball.

Figure 9-1. Example pdf

|
&

Neme: [Cups of coffee per hour

Normal Distribution

Probability

.00 B0.00 90,00 100.00 110.00 120.00 130.00

Moan [100.00 = Sid. Dev. [10.00

|

The range of expected cups of coffee sold in an hour is shown in Figure 9-1. The stochastic variables
are often called model assumptions. This particular assumption has a shape that follows a normal
distribution. It shows a mean of 100 cups with a standard deviation of 10 cups.

There are many possible distribution shapes (see the sidebar titled "Probability function basics,"
which follows), but two of the most common are the normal distribution and the log-normal
distribution. With a good simulation software package, you can input a data set and have the
software generate the appropriate curve. Although the exact shape of the curve is important in fine-
tuning the model, the slight error introduced by differences in the pdf shape are not a problem.
Often, the errors in the data set exceed the error introduced as a result of slight differences in the

distributions. The modeler should strive to be as accurate as possible but need not agonize over the
choice. The graphs are presented here to provide an understanding of the type of shape appropriate
for various process variables, such as time between events versus size of the product.

Probability function basics

The probability density function can have a variety of shapes. It is important to know a
little about the pros and cons of using different distributions. Beginners need not be too
concerned with the subtle differences, which become important only for very complex
models. It is important to realize that a good simulation tool provides flexibility in the
choices for pdfs and pmfs.

Normal Distribution

A normal distribution (see Figure 9-2), also known as a Gaussian distribution or bell
curve, is useful for representing many natural phenomena, for example, people's heights,
weights, intellects. This curve is probably the most familiar to people. The curve is
symmetric about the mean so that the mean, median, and mode are all the same value.
In theory, the distribution ranges from plus to minus infinity, so care must taken when
using this distribution because it may result in impossible values generated by a
simulation. The normal distribution is a good place to begin working with models and is
easily generated in spreadsheet software such as Microsoft Office Excel without the need
for specialized simulation tools.

Figure 9-2. Normal distribution

Normal Distribution

Probability

-3.00 -2.00 -1.00 0.00 1.00 200 3.00

Log-Normal Distribution

The log-normal distribution is skewed to either the right or the left. It is termed log-
normal because the logarithm of the random variable is normally distributed. It is often
used in reliability analysis to model failure times. Note that the median and the mean are
not the same value. If the distribution is skewed to the left, as shown in Figure 9-3, the
median is less than the mean.™ Like the normal distribution, the log-normal distribution
ranges to infinity. Also like the normal distribution, it is easy to generate in spreadsheet
software such as Excel. The curve is often used when many of the values occur near
some minimum value. For example, in stock prices there is a natural lower limit, zero, but
there is no upper limit.

Figure 9-3. Log-normal distribution

Lognormal Distribution

Probability

Beta Distribution

The beta distribution (see Figure 9-4) is actually a family of different shapes continuous
over an interval. The difference between it and the normal or log-normal distribution is
that it can be constrained to have minimum and maximum values. It is often used in

project management to describe the time required to complete a task, for example, the

time required to brew a pot of coffee. It is the distribution function most commonly used
for the examples in this book.

Figure 9-4. Beta distribution

Beta Distribution

Probability

-10.00 -8.00 5.00 -4.00 -2.00 0.00 2.00 4.00 600 E.OD

Gamma Distribution

Like the beta distribution, the gamma distribution (Figure 9-5) forms a family of
continuous functions. It is useful in modeling the time between events, for example, the
time between subsequent customers. It is also useful for modeling the time between
releases of components to the test process, time between defect reports, and so on.

Figure 9-5. Gamma distribution

Gamma Distribution

Probability

Wiebull Distribution

The Wiebull distribution (Figure 9-6) is one of the most commonly used because it can
closely approximate distributions such as the normal and exponential distributions. It is
often used in failure rate analysis, to represent manufacturing or project time, or to
represent delivery times, for example, time required to receive a cup of coffee after
ordering it (assuming the coffee was already brewed).

Figure 9-6. Wiebull distribution

Weibull Distribution

Probability

0.00 0.30 0.60 0.90 1.20 150 1.80 210 240

Exponential Distribution

Exponential distribution (Figure 9-7) is useful for any variable that decreases at a rate
proportional to its value; for example, the temperature of the coffee in a cup follows an
exponential decay curve. The exponential distribution is also used to model the time
between independent events happening at a constant average rate. Defect density per
software development phase can often be modeled using an exponential distribution, as
can the time between system crashes.

Figure 9-7. Exponential distribution

Exponential Distribution

Probability

000 050 100 150 200 250 300 350 400 450 500

Poisson Distribution

The Poisson distribution (Figure 9-8) is a discrete probability function, making it a
probability mass function. For simplicity's sake, continuous random variables are used for
the functions used in this chapter, but all of the models could be improved by using the
Poisson distribution. It is useful for modeling such things as the number of spelling
mistakes in this book or the number of customers per day in a coffee shop. The
probability is read directly from the y-axis; for example, the probability that 100
customers will order coffee per day is 4 percent.

Figure 9-8. Poisson distribution

Poisson Distribution
0.04 -
003
£
=
B 002
e
o
| ||‘ ““
0.00 ---ll.lllllll : : |III_IIII|I----...-
70 i) a0 100 110 120 130

W The skewness becomes important in the example developed in this chapter.

If a simulation is run with a time input of 1 hour, the cups of coffee demanded should exactly mirror
the probability density function, as shown in Figure 9-9. The difference is that this chart contains
the descriptive statistics along the right edge and appears as a histogram rather than a smooth
density function.!

[Note: All future pdfs actually show this style of chart to highlight the values for mean and
standard deviation without requiring you to understand the exact distribution function values. In
some cases, values are rounded off.

Figure 9-9. Coffee demand for a 1-hour period of time

[View full size image]

1,000,000 Trials Spki Viarw 894, 874 Desplayod
Cups sold per howr Srararc ForDCasE ok
13 000 Trals 1,000, 00
2 Rhean 10000
L .0 Proctan saEa
7080 Pl
5, [4
24 000 Sinndand Devatio 1000
Waranco pleelapy
i‘ Qi 21,600 I:"II Shawnoss o.oaz
o W00 O |Runos 300
& B |Codl i Varsmbbi 01000
[15,000 I
E-‘-_ nEmum Eish
12 000 Adaacsmum 14T 27
ik, 9000 Mbgn Sx. Erioe L
'T : 6.000
il . -
opg | el “T.” ﬁ" i LIE T a
30,00 80,00 100,00 19080 12000
b [rass] Cartainty: [30 0000 = 4 [11sas

The chart indicates the value for mean and standard deviation in the area along the right, along
with minimum value, maximum value, and so forth. Also, the number of trials in the simulation is
shown as the first number in the statistics. This particular model was run one million times. The
minimum number of cups was 51.5, and the maximum was 147.27.

It is often desirable to include a measure of risk along with the simulation. In this case, the
Certainty percentage shown below the histogram provides such a measure. In the diagram, the
central area represents the outcome for 90 percent of the trials. This means that 5 percent is in
each of the tail areas of the curve. In other words, 95 percent of the time, the coffee demand will
be in excess of 83.55, and 95 percent of the time, the demand will be less than 116.45. Most
organizations use 95 percent as an acceptable level of risk.

If the trials of the previous model are increased to 10 million, the statistics change, as shown in
Figure 9-10. Notice that the minimum and maximum values change significantly, but the values at
the 90 percent certainty level are not noticeably affected. The simulation would conclude that sales
will be between 83 and 117 cups of coffee with greater than 90 percent certainty (the values were
rounded down and up, respectively, because cups are sold in discrete units) after as few as 10,000
trials (see Figure 9-11).

Figure 9-10. Coffee sold simulation for a large number of
trials

[View full size image]

10,000,000 Trals Spht WVew 9,540,018 Dwplayed

Cups sold per hour Stararc Forocast vakues
vaog |Tnah 10,000,000
[LE9 10000
L 304,000 Macan 100 00
IT0.000 Plocle
24,000 Siandand Dovato 1000
Wananoe k]
| 290000 T |sppwmosns 39631004
(T 3
180,000 2 [Hurosis 300
o = & |CosMl of Varakd 01000
= . ‘i ik 4421
124,000 Adaomum 154 E3
ot w200 Mdani Sod. Ervoe ao0d
62000
30000
o0 [
BO.00 .00 00.00 110,00 120,00
blass Cortninty: (3000000 % 4 e

Figure 9-11. Coffee sold simulation for a small number of

trials
[View full size image]
10,000 Triaks Sphl Viarw 9,543 Desplaryod
Cups sold per hour St Fir DOSSE vaksg
Trals 10,650
(129 R
803 (TR EE
Moo
Siandand Devabio 1003
Wananon 100 68
2 I | skewnoss poer2
L urtosis 308
z Cesell o Varmbal 01004
DE_ [61186
Mzoomum AT 6
[T Mgaen 52 Ervoe o1a
o0
060 5000 10000 11900 120,80
| T Cortninty: [B000 % 4 [v1ess

Using the Modeling Process

We described the basic attributes of a model first so that you can understand the desired outcome
of the process. This section describes a process for creating a model to run a simulation. You should
realize that modeling is actually a thought experiment, so the process is more important than the
outcome. The trial-and-error nature of the process is where the learning occurs. The purpose of this
section is to provide a process for building a model and understanding how to improve a model. The
process described is as follows:

1. Define the goals.
2. Identify the initial process.
3. Determine process inputs and outputs.

4. Build the espoused process.

5. Compare process results with organizational results.
6. Develop the actual process.

7. Repeat if necessary.

Defining the Goals

The first step is to determine the questions that the model is to answer, as mentioned in Chapter 7,
"Software Measurement and Metrics," the Goal Question Metric (GQM) paradigm by Vic Basili.

Victor R. Basili, "Establishing a Measurement Program™ (College Park: University of Maryland,
2006),™M is useful in determining organizational metrics. Because one use of a stochastic model is to
model the organization's metrics, it is necessary to determine the questions that the model is
capable of answering. To determine the questions you will ask of the model, you must understand
the goals of the model.

M www.cs.umd.edu/~basili/presentations/2006%20WiproTalk.pdf.

Humphrey (1989) categorizes data as either predictive or explanatory.™! This categorization
provides an initial point for thinking about the goals of the model as either explanatory or
predictive. For example, a model of development presented later in this chapter was created for the
purpose of explaining why a highly efficient test organization was not capable of increasing the total
software throughput. In fact, on the surface, the organization seemed to be less capable
irrespective of the scorecard metrics. Upon modeling the situation, it became obvious that the
problem was one of an overall system—not simply one process—requiring improvement. Had a
predictive model, such as the one presented in this chapter, first been created, it would have been
obvious that improving one element of a tightly bound system would hurt overall throughput.

' w. S. Humphrey, Managing the Software Process (Reading, MA: Addison-Wesley, 1989).

Identifying the Initial Process

Chris Argryis describes a model of decision making and uses the phrase "espoused theories of
action" to describe the situation in which an individual's or organization's stated ideas are
incongruent with that person's or organization's behaviors.!?! Often, the inconsistency goes
unnoticed. The concepts of espoused process and process-in-use are viable as a means to explain
actual development. Often, an organization's stated process does not match its actual process. The
purpose of this step is to define the process that everyone believes is used.

@ c. Argryis, "Single-Loop and Double-Loop Models in Research on Decision Making," Administrative
Science Quarterly 21, no. 3 (1976): 363-375.

The espoused process may be documented but often is not. Even if a documented process exists,
the developers may still have a very different espoused process. It is best to begin by modeling
without critique or modification the process that the developers think they use. A team of software
developers may truly believe that they develop software using the espoused process. By using the
espoused process as the basis for understanding, it becomes easier to develop organizational buy-in
for the model produced.

Determining Process Input and Outputs

The next step is to determine the inputs and outputs of the espoused process. Associated with each
input and output is a set of data that should already be known to the organization or else is readily

available through data mining. For example, the most typical output of the software development
process is a working product or products. In other words, the output is code. The lines of code
(LOC), or thousand lines of code (KLOC), can be counted. The defects produced can be counted,
assuming they are tracked in a database. Each input and output needs to be countable in some
fashion so that probability density functions can be built.

Often, an organization just beginning in process improvement will not have data in a directly
consumable form but instead must mine for it. One of the benefits of an organizational scorecard is
to have a common definition of data that is directly applicable to modeling. If such data is not
available, estimates must be made. The estimates can come from either the organization or the
industry. Industry data is available in reports such as those produced by Davis and Mullaney.[
Reports from researchers will provide the process used to collect the data, which can then
determine the applicability of the data to other organizations. At a minimum, industry reports
provide average values that are usable as comparisons.

[N. Davis and J. Mullaney, The Team Software Process in Practice: A Summary of Recent Results
(Pittsburgh, PA: Software Engineering Institute, Carnegie-Mellon University, 2003).

To find a value such as lines of code per requirement, the organization will likely need to provide a
best guess estimate using a combination of average data and industry research. For example, using
information in the sidebar titled "Probability function basics" earlier in this chapter, the modeler can
estimate the general shape for a type of data. In this case, it is known that the size of a
requirement cannot be less than zero, but it can increase without bound. From the descriptions of
the curves, it seems reasonable that the log-normal distribution is a good starting curve shape for
the distribution function. To create such a curve, you need the mean value and the standard
deviation.?

@ A good modeling tool such as Crystal Ball can indicate the required information for every curve
type.

It is likely that teams have not gathered information on lines of code per requirement directly.
Instead, each team will know the total requirements created and the total new lines of code. As an
aside, most correlations are true only for new and changed lines of code, that is, defects found in
the product correlate to new and changed LOC but not necessarily to total LOC. (See Humphrey!®!
for detailed information on this point.) If a team knows the requirements produced in a release and
can count the total new and changed LOC, the average LOC per requirement is calculable for the
team. Measuring this across many teams provides enough information to determine the average
LOC/requirement and a standard deviation. Table 9-1 provides an example.

B'w. S. Humphrey, PSP: A Self-Improvement Process for Software Engineers (Upper Saddle River,
NJ: Addison-Wesley, 2005).

Table 9-1. Lines of Code per Requirement Calculations

Team Requirements Lines of Code LOC per Requirement
1 16 19,040 1,190
2 14 62,092 4,435
3 11 12,199 1,109
4 7 31,900 4,557
5 20 140,060 7,003
6 28 79,128 2,826
7 21 124,866 5,946

Table 9-1. Lines of Code per Requirement Calculations

Team Requirements Lines of Code LOC per Requirement
8 25 21,375 855

9 18 37,728 2,096

Average LOC per Requirement 3,335

Standard Deviation 2,249

Each team is treated like a sample of the organizational average. The average LOC per requirement
is calculated for each team, and then all of the averages are averaged together to get the final
number for the pdf. The standard deviation of the averages is calculated, and enough information is
known to provide a reasonable value for LOC/requirement for these teams.

Building the Espoused Process

The most important aspect of building the initial model is the understanding of the relationship
between inputs and outputs. The desired goals determine one or more outputs of interest. At this
point, it is not important that the espoused model accurately reflect the actual development
process, only that the outputs are properly chosen and that individuals reviewing the model will
believe it is the process they actually use. To build the model, a system of equations is created.
Each equation solves some part of the system, and when the solutions are all assembled, a view of
the process emerges.

In the coffee example described earlier, a very simple equation related consumption to a random
variable for demand per unit of time. The model could be queried for an estimate of the number of
cups required for any time period. Typically, each step in a sequential process can be nearly as
simple as the coffee example.

Comparing Process Results to Organizational Results

After the initial set of data is available and the equations are entered into a simulation tool, the
model is ready for testing. If the model has a goal that is explanatory in nature, the output of the
model must be compared with actual organizational data. Often, explanatory models are used in an
attempt to determine qualitative results. For example, later in this chapter a model is developed
that attempts to explain the failure to see the expected results of a process improvement effort. The
known fact was that little or no throughput was visible to an organization, and yet one step in a
process was significantly improved. The goal of the model was to explain the apparent failure of a
defect prevention activity.

In the case of predictive models, the proof of viability is in use. If the model accurately predicts the
outcome of development, it is a viable model. Often, subtle differences between predicted and
actual results are seen. If the model is developed in enough detail, intermediate results, such as
defects per class, can be predicted. This adds credibility to the model as well as provides useful
information for shorter-term projects.

Developing the Actual Process

Begin modifying elements of the model based on many runs of the model. Look for subprocesses
that produce discrepancies in the data elements or that have wide variances. Use industry data as a
check against a process. For example, Davis and Mullaney indicate that a Capability Maturity Model
(CMM) level 1 organization will have about 7.5 defects per thousand lines of code discovered after

release.™ (The Capability Maturity Model is discussed in more detail in Chapter 2, "Defect
Prevention Frameworks.") A level 2 organization is not much better, at about 6 defects per KLOC. It
is reasonable to assume that most organizations will be somewhere near this number.

W N. Davis and J. Mullaney, The Team Software Process in Practice: A Summary of Recent Results
(Pittsburgh, PA: Software Engineering Institute, Carnegie-Mellon University, 2003).

Make sure that the data and the model produce an output somewhere in the expected range. If the
output data is significantly different from the predicted results, more detail is needed to pinpoint the
cause of the discrepancy. The easiest place to begin looking for discrepancies is to check the PDFs.
If they are correct, it may be that a hidden process step exists.

Repeating If Necessary

Continue to run the model and look for discrepancies building the process-in-use; iterate until the
process-in-use produces the actual output. Eventually, the data elements that do not seem to make
sense should appear in the model. For example, as code reviews become more and more effective,
the time required to fix defects in unit test should actually increase. This is a result of the fact that a
minimum amount of testing is required even when no defects are actually discovered. Because the
probability of finding a defect in unit test decreases, the time spent testing defect-free software
must be amortized over a smaller and smaller pool of defects that are found.

A naive conclusion would be that the process is becoming less effective. When such discrepancies
appear, new opportunities for process improvement occur. In our example, the high degree of
stability in the inspection process makes possible the use of statistical sampling techniques for the
test process. Rather than attempting to do thorough code cover of all functionality, a quick sample
can be used to ensure the quality of the inspection and reduce the time spent testing high-quality
code.

Baseline Process Model Example

In this section, we build a model that provides a baseline for organizational improvement. The
model begins with a simple representation of software development and illustrates how to improve
the model over time. The baseline model is then used to predict the results of a defect prevention
activity. Finally, a complex representation of the entire development process is provided to illustrate
modeling dynamic aspects of software process. The data used in these models is based on data
gathered from many organizations and is used for illustrative purposes only.? You should realize
that actual implementation of these models requires using data mined from the actual organization
where the model is to be used.

2 For purposes of confidentiality, the exact organizations cannot be named. However, the data

agrees strongly with the results described by Davis and Mullaney mentioned earlier.

Simple Planning Model

This model can be used during the planning process, so its goal is to predict several aspects of the
development process accurately, for example, the likely size of the product and its approximate
cost. Consider the simple process shown in Figure 9-12. This is just about the simplest
representation possible for a software organization. Requirements are provided to the software
engineers, and after some time delay, working code is produced. The equation

Lines of code = Requirements * LOC per Requirement

Figure 9-12. Simple development model

Requirements Lines of Code

Y

Develop

is used by the development process to translate from requirements to lines of code. The LOC per
requirement variable is the stochastic variable in this equation. A corresponding stochastic model
requires a pdf for the number of lines of code per requirement and an input count of the anticipated
software requirements. Figure 9-13 contains a pdf for the model relating requirements to lines of
code developed using a method similar to that described earlier. Notice that this pdf has a slightly
different mean and standard deviation than that calculated earlier because it uses many more
teams, and yet the data produced by the relatively small sample of nine teams agrees strikingly well
with the larger organization. The data from a small fraction of the organization would have produced
a reasonable result.

Figure 9-13. Probability density function for LOC per

[View full size image]
100 500 Trmis ot \erw ¥ 743 Chparyed
LOCiRegusremant hefrie Fermenct wabiz
Trak 13200
AT [nean n 30§
e Wednn 7T T4
Sdoda
s 2 1 T v d Dins i LIE S0
i BRI 48X PEE AN
E‘ 1 ; L P — 1%
5 H'ht LAY 57
§ & |Cocl of Verabiey bEeir
& 1'\Hl__§ (TSN il dd
T 0 LT =TI
| R (YO b6t
voy | N it viset
IO LM EHE S000MH e FOXE N4 DM
b ez Cormmrty WO 5 4 1w

The x-axis in Figure 9-13 indicates the lines of code per requirement, and the y-axis indicates the
probability of occurrence. With 95 percent certainty, a requirement contains more than 780 lines of
code.™ Also with 95 percent certainty, a requirement contains less than 7,343 lines of code. Also
available are the descriptive statistics for this pdf, that is, mean, median, standard deviation, and so

on.

[Note that each of the tails contains 5 percent of the probability function, so the area in Figure 9-
12 with less than 780 LOC is 5 percent of the total.

You may think a pdf that contains a range as large as that in Figure 9-13 would not be very useful.
Certainly, attempting to predict the product size for any individual requirement will lead to a large
range of possible outcomes. However, very few products with an interesting amount of functionality
will have only one requirement; most will contain hundreds if not thousands. Assume that the
example product contains 100 requirements. The pdf in Figure 9-13 is sampled once for each
requirement, and the total combined estimate of code size indicates the likely outcome for a single
simulation. As mentioned previously, modeling requires simulating the outcome over and over until
a trend is noticed. Figure 9-14 contains the output probability curve for a product consisting of 100
requirements simulated 100,000 times.

Figure 9-14. Probable product size for 100 requirements

[View full size image]

W0 G Trmds Splt View S 08 Deapiapesd
LOCI R eguiramsn Sacbaic Fareczal vabms
Trda 7w e
pa [T e T
Llacten A W
2 L e

- Tgrali o Devalar 2155041
L] Warmnos A51 STa 0 50
;‘ 1 HX ;.': TPy [B E" A
; 150 B | K oo
T Cicrll. il ion bty i
i f ' L [e)
B-'. |_'._ﬂf£ [SETeT] HZHT 7
T4 Lz 12 Fes
. g 510 B &1 g0

e

T =

| | i

P A FEES B adld) alimm "

=0 e TG K3 000 09 (EFTe] B, DR 188 000 0
b Geoera =7 Comnny (50 000 - 4 [anaman

From the descriptive statistics to the right in the figure, the product will have an approximate size of
325 KLOC plus or minus 21 KLOC and will be no larger than 420 KLOC. This information is useful in
determining resources for the project. Assuming the organization codes at an average rate of 10
lines of code per hour, the project can plan for between 29,000 and 36,000 engineering-hours of
effort.

This estimate uses a size estimate of between 290,669 and 360,635 lines of code for the product. In
a model such as this, the value at the 95th percentile is used, giving 36,000 hours as the expected
effort. The reason for using this value is that it is 95 percent likely that the project will be smaller
than 360 KLOC, and 5 percent is typically considered an acceptable risk level. At a $90 per hour
loaded engineering rate, the project will cost between $2.6 million and $3.2 million.

Notice that the model has produced a fair cost estimate with relatively imprecise data. One
weakness of this technique is that it requires that the new system requirements match the
requirements used to generate the LOC per requirement pdf in approximate size. A well-established
requirement-gathering process is likely to produce fairly consistent requirements. However, to
mitigate this risk, the model must be improved and the explicit and implicit assumptions removed.

Notice that the cost estimation produced by the simple planning model makes three assumptions.
To convert from lines of code to engineering effort, the explicit assumption of 10 LOC per hour for
the productivity rate is used. Of course, every hour of effort does not produce 10 lines of code, so
one improvement is to determine a pdf for productivity. The second assumption is that 100
requirements will be produced. It is likely that past projects had a range of planned versus actual
performance. The third assumption is that every requirement entering the development process in
Figure 9-12 uses exactly the same process to develop the code.

The first two assumptions are easy to model with additional random variables. For example, Figure
9-15 models the planned versus actual requirements from past projects.[* This example shows that
the team delivers only about 9 of every 10 requirements planned. There is a chance, albeit a small
one, that the team will deliver more than the planned amount of work. However, 95 percent of the
time the team will not make the committed amount of functionality.

[Because the distribution shows discrete values, it is more properly termed a probability mass
function. The probability of delivering N requirements for every 100 planned is read directly from
the scale at the left edge; for example, the probability of delivering 90 requirements is just under 5
percent.

Figure 9-15. Actual requirements delivered per 100
planned

[View full size image]

M 0000 Trials Sl \iarw T8 000 Displayed
Actual requirements delivered per 100 planned | po— Forecas voues
oo 3000 |Teeals V00000
Ih'h-"- &R0k
430 IMll.‘m E3.00
o4 1300 I’-"?"-‘-' 00
iS‘.n"udnnJ Dawvila 8.54
L0 Yananon T
|« _ N
& o Lkt 1 vy o
] |
- L3O F \Coal of Varisbili 00982
E oo >r.m,§ IM--*'.m 43.00
" |Mpgmam 11300
I L0 Masm S Ermor il
L] 1,000
| S0
o - 1
50 B0 T] = o] 110
e ——
B[Cerainny [#0.000 % 4 [rooon

The improved model associated with the pdf in Figure 9-15 includes a new stochastic equation. The
equation set becomes the following:

Requirements = Planned Requirements * Completion Rate per requirement
Lines of code = Requirements * LOC per Requirement

For the remainder of the examples, the focus is the process used to develop software. For
simplicity, the system assumes a fixed number of requirements. You should realize that the addition
of a planned versus actual completion equation allows the model to eliminate the assumption. Also,
a more complex model would include the possibility of requirements being developed but never
shipped as well as new requirements added after the start of development.™

W Changes in requirements can also be modeled as a type of defect.

Improved Planning Model

The assumption that every requirement goes through exactly the same process is actually more
problematic than the assumed rate of lines of code produced per hour. It requires that all
productivity rates are equal, all defect densities produced are equal, and so on. To prevent defects,
the team must understand normal process variance, and the process must somehow make the
variance explicit. To predict the variance, a better process model is needed. After the simple model
of Figure 9-12 is found to compare well with the actual organizational performance, it can be broken
down into more steps for more thorough analysis. It is recommended that each model be compared
with actual performance to verify that the data collection is producing usable information.

To improve the model, the single step called development must be decomposed into its aggregate
parts and the relationship between those parts must be examined. A two-step process consisting of
writing the code and then testing the code, or what can be thought of as creating the defects and
fixing the defects, provides a reasonable improvement as a starting point for more understanding.
Future models then build upon the concept of one process injecting defects while another tries to
prevent the defects. Processes with steps that are in opposition often model the system better
because a positive change in one process results in a negative change in another process. The
model will have a step that determines the number of lines of code and the total defects created,
followed by a step that removes the defects from the product (see Figure 9-16).

Figure 9-16. Two-step process model

Requirements

Create the
code

Fix the
defects

Released
Code

The stochastic equations associated with this model are as follows:

Classes = Requirements * Classes per Requirement

Lines of code = Classes * LOC per Class

Total Defects = (Lines of Code/1000) * Defects per KLOC

Code Effort = Lines of code/LOC per hour

Discovered Defects = Total Defects * test yield

Testing Effort = Discovered Defects * Effort to find and fix a defect

Total Effort = Code Effort + Test Effort

This system of equations must be solved using the stochastic variables shown in Table 9-2. The
simplicity of Figure 9-12 has increased dramatically with the addition of just one more process step

and the associated variables.

Table 9-2. Process Data for Two-Step Process Model

Process Step Inputs Outputs

Create the code Requirements Lines of code
Count of classes
Defects
Effort

Fix the defects Defects Released LOC
Discovered defects

Effort

Stochastic Variables
LOC per Hour

Defects per KLOC
Classes per Requirement
LOC per Class

Yield

Effort to Find and Fix Defects

Notice that the model was built with the measurement system in mind. All of the required
probability data is obtainable by mining organizational databases.™ Typically, a team is assigned a
requirement or set of requirements and produces the product from the assigned requirements. The
total number of classes for the team is easily determined. The lines associated with each class are
also countable, as are defects per class, defects discovered by testing versus other sources, and so
on. The only difficult item is the effort required to produce a set of requirements. A suitable proxy
for effort is a count of engineers on the project and the actual elapsed time for the project. Assume
a 40-hour week, and a reasonable effort measure is obtained. Of course, a more detailed effort
measure is preferable—the more detailed the measurement, the better the model and the more
granular the prediction. Detailed data obtained through a process such as the Personal Software
Process allows prediction at the individual level, whereas the proxy effort estimation just described
may allow for modeling only at the organizational level, that is, hundreds of requirements across
multiple teams.

[Assuming that the organization tracks its defects, has project plans, and uses some form of
source code repository.

Building the Model

For each requirement, sample the pdf for Classes per requirement and the pdf for LOC per class,
multiplying the two values to determine the probable lines of code for the requirement. Totaling the
LOC for the planned number of requirements and ignoring that the team typically delivers less than
planned, the total project LOC is obtained as shown in Figure 9-17.

Figure 9-17. Estimated LOC for the more detailed project

[View full size image]
100,000 Trialks Sl Viarw i 465 Daplayed
Total Project LOC Satnsc Forscey vaues
Trials V000
5300 A A%s 784 A&7
o 1000 IMn:al X34 297 18
21700 Mode
Saanderd Dasvais 18,313 23
A0 fsnance 6123, 142.4
i‘ A 200 ";" [[RE]
= Lagn & [Meesces 104
o & |Cos# of Verishilis 00502
& 30 3 M 262,154.29
10 |Mogmam 40020 &)
L] wi Maarn S Efror 158
" . &0
il | |II|'|- b
oo | i 'l. LU 3
230,004 00 » 364,000 00
| JETTTE] Cartaenty. |0 000 % o 52474 58

Notice that the simple model previously discussed and this model produce about the same mean
number of lines of code. However, the more detailed model produces a smaller standard deviation.
Often, the more detailed the model, the more precise the estimate because extreme values
occurring simultaneously on two pdfs are more unlikely to occur.™ The exception to this general
principle occurs when two processes produce variances that have a high probability of canceling
each other out, which is rarely the case in software development. However, if the model does
produce such a result, additional detail is not beneficial.

W This effect shows up in the actual product development. You may get unlucky during the design
phase, spending more than the planned effort, which then allows the coding phase to proceed more

quickly. Breaking up the process into many steps more accurately reflects the real-world
interactions in the process.

The estimate is now 325 KLOC plus or minus 16 KLOC, reducing the range on the cost estimates as
well as reducing worst-case estimates (based on the original assumption of 10 LOC per hour).
However, the cost estimate can also be improved by creating estimates for individual tasks rather
than total LOC. To improve cost estimates, the effort estimates for creating the code must be
separated from estimates for fixing the defects. This will model the natural variability of the test
process much more realistically.

An estimate for the number of classes was just created when projecting the total LOC. Also, an
estimate for lines of code per class was created. By using the effort probability density functions for
hours per class and hours per LOC, an estimate for total effort to design the classes and create the
code is obtained. This is an estimate for the effort to create the code as well as creating the defects.

The next step in modeling the defect removal process is to estimate the total product defects.
Because the lines of code for each class are known, the model estimates the class defects by
sampling the pdf for defects per KLOC, once for each class. Multiply the lines of code in the class by
the sampled value for defects per KLOC. This simulates the defect creation process and provides an
estimate for the total defects in each class. The process is repeated for each simulated class to
estimate the total defects in the product.

When managing the actual project, the estimated total defects is as important, if not more so, than
the total project cost. It becomes a means to track the progress of the defect removal process and
determine the estimated code quality. Without it, the team can never determine the probable
product quality.

At this point, the simulation has a defect per class estimate, but the defects must be found and
fixed. For each class created in the Create the Code phase, estimate the defects removed by
sampling the yield pdf. Multiply the total defects by the yield to determine the number of defects
that will be found and fixed. The effort to find and fix each defect is estimated, and the total cost to
fix the defects in the product is determined. Summing the total effort to create the code for each
class and the total effort to fix the defects provides the total effort to build the class. At this point,
all of the equations for the model have been solved. As before, the simulation is run multiple times
to determine predicted defect densities, size, effort, and so on.

After the model of the process flow is complete, you can determine how much effort is required to
create the code and fix the code. The defects removed during various development phases are
known as well as the likely defect density of the product at release. Using expected cost per
development hour, the total project cost is known. All of this data is determined based on historical
organizational performance and expected system functionality. The model is a useful tool for project
planning and a necessary first step to defect prevention. If an organization cannot reasonably
predict the product quality, it will be unable to predict the benefits of particular improvement
activities, making process improvement a hit-or-miss proposition.

At this point, you may think that two types of processes exist. The first process creates work
product, for example, code, increasing the total count of defects in the product. The second type of
process removes defects and perhaps changes the code size moderately. In fact, there exists only
one type of process. It takes as input the size of the product and current defect count and produces
as output a new size and modified defect count. Each phase builds product with some productivity
rate, reduces defects at some yield rate, increases defects at a defect injection rate, and calculates
the effort required to execute the process.

Abstracting the processes in such a manner allows the modeler to build a simple yet powerful data
model. The model requires only size, cost, and quality metrics for each step. Humphrey provides
more information on determining proper measures for size and quality for the development process,
but the principles described are easily translated into test and requirements analysis processes.™
With a pattern for a process step, the modeler can build complex sequential processes.

M 'w. S. Humphrey, PSP: A Self-Improvement Process for Software Engineers (Upper Saddle River,
NJ: Addison-Wesley, 2005).

Detailed Quality Model

The simple two-step process produces reasonable accuracy for estimating size. However, many
engineers object to the fact that all defects are considered equal in the two-step model. As stated
earlier, more detail in a process typically reduces variance, and the range for defect fix times is
significantly different depending on the type of test activity used to find the defect. Therefore,
breaking the fix process into the component pieces allows for more refined probability density
functions. Additionally, the process must have enough detail to determine activities that prevent
defects from slipping to the test process.

Assume the development process consists of the process phases shown in Table 9-3. The process is
fairly typical of traditional development organizations and is a simplified version of the process used
in Chapter 2. You can think of each phase as an instantiation of the simple process in Figure 9-12,
that is, each phase inputs data, processes the input, and produces an output.

As shown in Table 9-3, each step takes as input the size of the output from the prior phase and the
expected defects in the product. Each step then produces a new size, effort, and quality estimate.

Table 9-3. Detailed Development Process

Phase Inputs Outputs
Design Number of requirements Number of design classes
Number of design defects created
Design effort
Code Number of design classes Number of lines of code
Number of defects Number of code defects

Number of total defects

Effort
Compile Lines of code Lines of code
Number of code defects Effort

Number of total defects
Code defects discovered
Unit Test Lines of code Lines of code
Number of remaining defects Code defects discovered
Design defects discovered

Number of remaining defects

Effort
Integration Test Lines of code Lines of code
Number of defects Code defects discovered

Design defects discovered

Table 9-3. Detailed Development Process

Phase Inputs Outputs

Number of remaining defects

Effort
System Test Lines of code Lines of code
Number of defects Code defects discovered

Design defects discovered
Number of remaining defects

Effort

There are many ways to build the model, with each providing a slightly different view. It does not
matter how you begin creating additional detail. The easiest method from the perspective of initial
data gathering is to expand the sequential process beginning with the inputting of the planned
requirements and completing with released software, as shown in Figure 9-18. Each process step
requires several pdfs to simulate the process. The model is drawn to highlight the fact that each
step executes as a separate process.

Figure 9-18. Sequential process model

PDFs Required

Requirements

Productivity
defect rates

4| Design i

Productivity
defect rates

Yield
find and fix times

Yield
find and fix times

Unit test

Yield

find and fix times

Integration
test

Yield
find and fix times System test
Released
software

The model solves the following system of equations:

1.
2.
3.

Classes = Requirements * Classes per Requirement
Design Defects = Classes * Defects per class
Design Effort = Class * Hours per class

Process Outputs

Class designs
defects
effort

LOC
defects

Discovered
defects

Discovered
defects

Discovered
defacts

Discovered
defects

The

8.

9.

15.

16.

17.

18.

19.
20.

21.

22.

23.
24.

Lines of code = Classes * LOC per Class

Code Defects = (Lines of Code/1000) * Defects per KLOC

Coding Effort = Lines of code/LOC per hour

Lines of code added in compile = Code Defects * Code churned per defect

Defects removed in compile = Code Defects * Compile Yield

Defects escaping to UnitTest = Design Defects + Code Defects — defects removed in
compile

. Compile Effort = Defects removed in compile * Defects per hour removed in compile
. Lines of code added in unit test = Defects entering Unit Test * Code churned per defect
. Defects escaping to Integration Test = Defects escaping to Unit Test — defects removed in

Unit test

. Unit test Effort = Defects removed in Unit test * Defects per hour removed in Unit Test
. Lines of code added in Integration Test = Defects entering Integration Test * Code churned

per defect

Defects removed in Integration Test = Defects escaping to Integration Test * Integration
test Yield

Defects escaping to System Test = Defects escaping to Integration Test — Defects removed
in Integration Test

Integration Test Effort = Defects removed in Integration Test * Defects per hour removed
in Integration Test

Lines of code added in System Test = Defects removed in System Test * Code churned per
defect

Defects removed in System test = Defects escaping to System Test * Compile Yield
Defects escaping to the customer = Defects escaping to System Test — defects removed in
System Test

System Test Effort = Defects removed in System Test * Defects per hour removed in
System Test

Total effort = Design Effort + Code Effort + Compile Effort + Unit Test Effort + Integration
Test Effort + System Test Effort

Total Defects Remove = Design Defects + Code Defects — defects escaping to the customer
Total product size = Lines of code + lines of code added in compile + lines of code added in
unit test + lines of code added in integration test + lines of code added in system test

PDFs required for the process are as follows:

Classes per requirement

Lines of code per class

Hours per class

Hours per thousand lines of code

Defects per hour removed in compile

Design defects per class

Code defects per KLOC

Yield in compile

Yield in unit test

10. Yield in integration

11. Yield in system testing

12. Defects per KLOC

13. Hours per defect removed in unit test

14. Hours per defect removed in integration test
15. Hours per defect removed in system test

16. Total LOC per hour

All of the data items can be measured directly in a typical development organization and do not
require that an entire development cycle be completed to get a representative pdf. Because project
cycles are iterative, early estimates are easily verified after a small sample of the total classes are
designed, coded, and tested. Also notice that the cost of quality is directly determined in this model.
Because the defects discovered in a phase of development are directly measured and because the
effort to find and fix the defects is measured, the total cost per defect per phase is a derived
measurement.

As shown in Figure 9-19, the mean productivity for this enhanced model is still approximately 10
LOC per hour for each requirement. If the various teams in this organization measure their average
productivity, they would average about 10 LOC per hour, which is the value used earlier. However,
the total project effort is estimated at about 37,700 hours plus or minus 2,350 hours, as shown in
Figure 9-20. The average total project productivity is closer to the median value rather than the
mean value. The effort range is about the same as the previous model using only the size, but the
total effort is greater by almost 3,000 hours. In fact, the effort falls outside the prediction interval of
the simple model.

Figure 9-19. Project productivity predication for detailed
software process

[View full size image]

1,000 Traly Solt Wharw 03 Daplyyed
End 19 End Froductivity per Requiremeant | Halnsc Forecew voue
ir-'-als 1,000
a3 Mo 007
2 [Masar LR
5 Iun.a-
= |Sundend Devals 467
2 [Wesance .81
L3 (B 1.38
Mo [Hertcen 5.7
20 E |Coes o8 Varebin DEE3T
B [Missmam 2.07
B v 13.32
e |Maam S5l Ervow 0 1%

[]
.
ot Fa
200 [11] -5 1]] 1200 i 16 00 18 o0 08 200

-

Blass Cartaingy: [90.00 % 4 jrom

Figure 9-20. Estimated project effort for detailed process
and 100 requirements

[View full size image]

00000 Traaks Sl Wiarw 5. 31 Daplayed
Total Project Effon Statnsc Forecas vnues
Trialy [lucke =)
1300 mary 7,887 11
6nm 1000 Ih'h'un:l 37,587.28
pig [Mode :
Snanderd Davais 238139
L4000 Wananom 5497 454 00
i‘ i LI i" [..-;:ula-:
] 1 800 & LTy 1.3
- & |Cos# of Verishilis D62
E i ﬁllj,’ W aEm 79,436 21
130 |[Mogsam 49, 588 T
o ey Pasn S8l Efrod 4
of 60
-
= 1. 3
il .
s —art2Ed WL REL LN i || 1|..| 9
32080 0% 4000 20 36, D2 . 10 33,0000 40 30 07 42,030 00 34 000 0]
| AT Canaty. (20,000 % L BT

A detailed examination of the data indicates that the higher effort is a result almost entirely of the
high variance of activities in the testing phases of the project, specifically the system testing
process. The tail on the effort required for test is very long, indicating a significant chance that
system test will require much more than average effort. In a project of this scope, it is virtually
certain that several of the requirements will end up performing on the elongated tail, thereby
causing the project to slip by about 15 percent over the simple model. In fact, each of the defect
removal phases has the possibility of an extended duration, that is, the effort appears to have a log-
normal distribution. System test has the longest duration and therefore appears to be the cause for
schedule slips. However, each of the test phases contributes to the slip, but problems seen in
integration test are masked by the problems seen in system test hiding the problem in the other
test phases.

These results correspond well with the subjective data. Many projects are held up by one or two
features that seem to take forever to complete. This model suggests that less than 5 percent of the
code will be cause for continual rework and never-ending bug reports. In fact, industry studies from
IBM confirm such a finding. Humphrey reports an internal IBM study that showed half of the total
customer-reported defects occur in just 4 percent of the code.™ It turns out that the model predicts
that more than half of the defects remaining in the product are in about 5 percent of the code, thus
proving the old adage: the only way to get a quality product out of the test process is to have one
going in.

W w. S. Humphrey, PSP: A Self-Improvement Process for Software Engineers (Upper Saddle River,
NJ: Addison-Wesley, 2005).

The model also predicts a defect density of between 6.4 and 7.4 defects per KLOC (see Figure 9-
24). According to Davis and Mullaney,! typical release quality for software is 7.5 defects per KLOC
for CMM level 1 companies and 6.24 for CMM level 2 companies.!® Since most companies are at
levels 1 and 2, the range of 6.4 to 7.4 defects per KLOC predicted by the model agrees with
industry studies.

@ N. Davis and J. Mullaney, The Team Software Process in Practice: A Summary of Recent Results
(Pittsburgh, PA: Software Engineering Institute, Carnegie-Mellon University, 2003).

¥ See Chapter 2 for a description of the CMM process framework.

Figure 9-21. System test effort for detailed process

[View full size image]

100,050 Triaks Spli Waw #7709 Dplayesd
3T Effon Hatnsc Forecay: vauey
|Trials V000
ism [Meee 242 35
|Minssar 177.82
bod L |Mioae
ysp0 |FRendend Deveii 218,45
e E'..'q-nm;u 47,721 &1
i‘ac; :c.x-E' i 277
H 18.38
. 35000 [fumtesn B
o & |Con of Verishie AT
£ am 10000 [Miwmam 665
- !|.'|r|i:—..m 43078
|
| 500 Ml Snal Edroq 082
oo 1.000
L]
o ! ey 2
0 WX MO MO0 4000 000 SM00 OO0 80000
) Certasnty, 09000 I 4 Bs7as

This data is enough to build a fairly comprehensive model, but note that improvement is still
possible. For example, design and code defects can each have their own pdf for discovery and for
churning the code. Effort for design defects is likely to be different from effort for code defects.
Additionally, the compiler will be highly effective at finding code defects but relatively poor at
finding design defects. After a working model implements the basic pattern for a phase, changes are
easier done than said.

Some data can be used to cross-check the model. Previous models determine the total defect
density in the product. The new model should produce results similar to the previous models. If it
does not, it may indicate an error in the model, or it may indicate a worst-case outcome never
actually experienced. With models that evolve over time, the modeler can more thoroughly explain
the development process, as is the case in the differences noted in the effort estimate in the
preceding examples.

Although additional detail in the sequential model is possible, more detail is not necessary for
purposes of this example. There is enough richness in the combinations of data already described to
determine the effects of proposed prevention activities. As will be shown in the next example, the
model just developed provides useful information on the interactions of defect creation and
discovery activities.

Process Improvement Model

An organization gathering the type of data necessary for the baseline models just developed is
capable of examining the effects of a variety of proposed improvement activities. This example
shows how to add a new process to an existing model and examine the effects. To simplify the
example somewhat, the process is limited to the design, code, compile, and unit test phases. For
the most part, this eliminates the need to model more than one organization. Although the method
for integrating product components and then system testing the entire product may differ
significantly across the industry, organizations often have a single individual design, code, compile,
and unit test his or her own work. The example defect prevention activity simulates the effects of
formalized inspections on the development process.

Assume that an organization is using a process as described earlier. The sequential process of
Figure 9-18 works well in predicting the product size, total cost,’*! and quality of the final product.
However, the organization desires quicker time to market, reduced costs, and improved quality, as
do most organizations. Faster, better, cheaper is the desired outcome of all process improvement
activities.

[Cost is simply the total effort in hours times the loaded engineering rate per hour, in this case,
$90 per hour.

From the data, the organization determines that defects found earlier in the process cost less than
those found during system test. Additionally, the effort expended in system test is the highest for
any of the process phases. In fact, the cost for test is roughly equal to the combined costs of the
other phases. Thus, system test is a bottleneck resource for the process. Eli Goldratt and Jeff Cox
write that one way to reduce pressure on a bottleneck resource is to inspect all of the work product
before it enters the bottleneck.!” However, formal code inspections require effort. It is desirable to
understand the effect a process change will have on schedule, cost, and quality before undertaking
an expensive training program.

(4 E. Goldratt and J. Cox, The Goal: A Process of Ongoing Improvement (Great Barrington, MA:
North River Press, 1992).

Because the target of this effort is to reduce the defects escaping the engineers' office, the new
phase called Code Inspection can be placed in one of three locations, as shown in Figure 9-22. The
inspection can take place after the code is written, after it is compiled, or after it is unit tested.

Figure 9-22. Development process with possible code
inspection points

Code
r
| =]
Compile
Possible locations for
code inspections < — 1
LInit Test
=
N

To determine the optimal point in the inspection process, it is necessary to model the process. Using
the input-processing-output pattern developed earlier, the process requires an input size and the
estimated defects discoverable by inspection. The output is the effort required and an estimate of
the defects found (or those escaped). The equations to be solved are as follows:

Inspection effort = LOC inspected * effort per KLOC

Defects escaped = Defects entering inspection * Yield

Defects found = Defects at start of inspection — Defects escaped
Correction effort = Defects Found * Effort per defect

Notice that the equation for defects escaped uses a probability density function from either the
coding, compiling, or unit test phase. This will likely affect the pdf for possible yield. Also notice that
the effort to inspect is calculated from the size of the lines of code. It could also use a defect per

hour rate similar to the other defect discovery phases, but product size is easier to measure and
gives a more accurate relationship in extreme situations.™! For example, if the code has no defects
in it, the defect per hour model gives an incorrect time of 0. Because it requires almost as much
effort to inspect high-quality product as low-quality product, LOC is a better predictor of effort. A
better model is one that separates the effort to find the defects from the effort to fix them.?! Then
the effort to inspect is proportional to both lines of code and quality of the code. For code of
reasonable quality, the differences will not be significant for purposes of this example.

[Assuming that effort per KLOC is controlled during the inspection process, which it should be,
given the assumption of a formal code inspection method.

@ You may argue that the test phase should also separate the find and fix times. In fact, a complete
model would do just that in addition to separating out defect types and possibly defect report
sources.

To determine the correct placement in the process, three different models must be created with the
new simulated process phase, and the effects on the remaining processes must be calculated. For
simplicity, only the net effects are described, that is, the total project cost and the total defects
escaping the process. It is unlikely that the inspection process will have a noticeable impact on the
code size because the product is assumed to be already coded. The effort to review the code
assumes three or four reviewers for every portion of code and that the review rate will vary from
100 LOC per hour to as high as 300 LOC per hour. The yields range from 25 percent to as high as
55 percent. Of course, in a real development process, there is an impact of learning and continuous
improvement in the inspection process, so the yield starts out low and gradually increases.

Figures 9-23 and 9-24 show the charts with no inspection process. Figures 9-25 and 9-26 show the
inspection before compile charts, Figures 9-27 and 9-28 show the inspection just after compile, and
Figures 9-29 and 9-30 show the results for the inspection after unit test. From the charts, expected
improvement in cost and quality can be determined.

Figure 9-23. Total effort with no inspection process
[View full size image]

10050 Traks Sl Wearw #5371 Dimplayed
Total Praject Effor Seninsc Porecey: e
Trialy [lucle =)
1300 Blmary X7 BAT 11
nm 1000 Ir\-'h'u."ul 37,587.29
1ig [Mode :
Snsnderd Dasvah 2341719
1.400 Wanance 540 45407
i‘ o L E‘ [—— ..-;:ula-:
= e 3.7
= F [Coe¥ of Vieriahie L1
£ LS50 B IMirimam 73,43 21
130 |[Mogmam 449 585
om 5 Mo Sad Ernod id
of 0
o ‘[-
off T, £
il I'
e il 3
32 080 0% 14.080 30 35, (.00 33,0083 00 40,31 00 42 030 £ 44000 0
| REEEET Ceriaesiy, 00,000 L L BITIEET

Figure 9-24. Defect density with no inspection process
[View full size image]

10,000 Trinks Sl arw 5.045 Dimplayed
Project Def [KLOC in Rak] Code Hainsc Forecey vaues
Truals 10000
S T 00
pen Misar 5.88
bods
20 Sasderd Dasvais 0.30
wanance oo
e [Q06T
- T m
i Coef of \Vrishiit 00435
10 7 M 5.8
- narmam B
Mt Sad Erron oo

m

B o Certanty, [20.00 = 4 fra

Figure 9-25. Total effort when inspection occurs before

compile
[View full size image]

100,000 Trinis Sl ey 0431 Duplayed
Total Project Effort | Slalsns Fe eoass values
1300 ITInh 1660 000
£ ! 3205930
e 2000 Mesan 320851 87
270 Mioda
sqpg [Romdesd Dereto 153601
b IWarercs 2,961 785 23
i 1] 210 I fsuwwnas 0.1998
] 1800 s 197
0 ot of Warakan D04
E 1300 2 bninsm 25,600 38
1200] #0534 20
B W digan S5d Error 48

o]

0

o

20020 09 .00 00 00000 00080 30.900.00
LA Certasnty [B0.000 % 4 e

Figure 9-26. Predicted released defect density when
inspection occurs before compile

[View full size image]
100,050 Trls Spld Waow #5467 Dimplyyesd

Frojact Defects/KLOC in Releazed Code Hatnsc Forecas! vaues
Triak [lusle]
ko 350
R0 L1 .8
s -
Sasndend Dl 018
‘Wamnnca oz
TR oo2oe
Kiricam 1M
Coss. of Varahin oo4nl
LB 208
bnarmam B b
blass Sad Feroe il]

03l

Protiablty

b

D

| JEET Canasny 20000 = dhwm

Figure 9-27. Project effort when inspection is after

compile
[View full size image]

8,100 Trnls Splt iew 5,050 Drplyed
Total Project Effort | Swtssc Frewcast vahies
wg [Toes 8,1,
Ny 22 53 50
I Mok 250
1] 240 ulcdda
Fandsnd Dwviato 1.525.30
0 Aanoecn 1338537 73
i‘ i 5' Shewnass 0.1754
R Prunass 30
-] - Moot of Yorabid 0 0=
E g8 [Mnmum 27 534 40
BT 30 ATE 0
ne 80 ean Sad Error 1618

L]

30

300]

| JETER Cactamty [B0.00 % i [=rmoe

Figure 9-28. Predicted defect density when inspection is
after compile
[View full size image]

8100 Trisds Fiplel harw §.045 Displayed
Project Defects/KLOC in Released Code Eatnsc Foreces! muss
Trials 00
M ko 350
R0 L1 .8
0m 280 [T Ly
o Sasndend Dl 018
‘Wamnnca o
i‘ 180 T [Showriss ooam
o b . Kurioan 107
g W5 |Com o varmnim FTETTY
120 ; Pl o i 280
1F . bnarmam i1
bg = hass Sd Frron ono

L]

o

oo]

| 2FET]

Figure 9-29. Total effort when inspection is after unit test

[View full size image]

9600 Trols Sl e § 550 Druplayed

Total Project Effort Saben: For icast vahict

yg [Teek 8,620

Mg 2720004

am M dedan 3715518
240 Tiaidand Darveian 1.714.00

Wanmrcn 2,840 751 55

__i‘ 20D fsiewnass 01891
= A 180 3 L el A
= B0 o of Yariaki 00487
& Manimism 1 05 53
120 BT 24 47475

@ 5 Mbgan Sad Error ¥7.50

&0

]
o __&.ﬂiﬂm L., |

R Q020 2
| AT Cactanty [B0.00 5 o [40,112 80

Figure 9-30. Defect density when inspection is after unit

test
[View full size image]
D600 Traky Sl Wiarw .55 Dmplayed
FProject Defecis/KLOC in Released Code sl Forecaw vaue
=0 Trials 000
(LD 358
= WA gt e
b ; [TREPY
G Saanderd Devnals 018
4 Wananee o
5‘ T |suswrass 01282
0 am e B i 302
g 0 @ [Cosf of Vershin ST T T
=

R L¥ PR 208
L 18 = Masrmam L
o Maas S Feror 000

&

- . %

0o . [

110 | 130 348 1% 160 im 3%
| ZEET Cgriatnpy 000 L% qpm

When the inspection is placed before compilation, the total effort drops to about 32,100 hours plus
or minus 1,540 hours, with an average predicted release defect density of 3.2 defects per KLOC.
Although the productivity has improved, it has done so by an average increase of less than 10
percent. The marked improvement in cost is caused almost entirely by eliminating the wide
variances associated with system test. Without inspections, a few of the simulated requirements
spent seven times longer in test than they did in development. The new process step reduces the
excessively long tail on the output distribution and cuts the variance by more than a factor of 3.

When the inspection process occurs after compile, the quality is not significantly affected, but the
cost is. The total project cost increases to 32,900 hours, with a defect density of 3.5 defects per
KLOC. There is actually a slight drop in inspection yield because the compiler is finding bugs that
were found previously during inspection, but the combined phase yields are approximately the
same. Notice that this results in a counterintuitive decrease in productivity. The reason for the drop
is that the cost for inspection is about the same in either case because it is the number of lines of
code that determines the cost. In compile, it is the number of defects that drives cost. A cleaner
product submitted into the compile phase reduces the cost of compile without changing the cost to
fix the defects.

Finally, when the inspection is done after unit test, the cost is slightly less than it is without
inspections, although not significantly different. The reason is that much of the benefit to the
project effort is lost. The compile and unit test phases have already found many of the defects.

However, as was already mentioned, it is the size of the code that determines cost, not the quality.
In this scenario, the project incurs all of the cost with only a fraction of the benefit. However, the
quality is affected in a manner similar to the other two inspection process models.

Unfortunately, the defect density is not usually measured in the development process, which may
lead the development team to the mistaken conclusion that inspections negatively affect project
cost. Additionally, the cost variance increases, which may lead to the belief that inspections are
actually counterproductive. One positive benefit of inspections regardless of the placement is the
reduction in variability in system test. A team experiencing exceptionally poor quality will likely
benefit no matter when inspections are done. Finally, the difference in defect density is very large
for no cost penalty, proving Phil Crosby's point that "quality is free."™

M p. Crosby, Quality Is Free (New York: McGraw-Hill, 1979).

The conclusion for this process improvement effort would be that to minimize cost the inspections
must be done before the compile phase. However, quality is increased regardless of the process
phase. This likely seems odd to most developers because the logic is that the compiler removes
defects faster than an inspection does. However, the effort of the inspection process is mostly
affected by the size of the work product, not by the defect density. The compiler, however, is gated
by the quality of the product. Therefore, from a cost perspective, the minimal cost occurs when the
highest-quality product is compiled and then tested. This agrees with the conclusions Eli Goldratt
reaches in The Goal.[?! Goldratt's advice is to optimize product flow by having only the highest-
quality product possible submitted to the bottleneck resources.

4 E. Goldratt and J. Cox, The Goal: A Process of Ongoing Improvement (Great Barrington, MA:
North River Press, 1992).

The conclusion on the optimal placement for the inspection process also agrees with the one
reached by Steve McConnell, who presents an elegant argument for reviewing the code mentally
before compiling it.! McConnell's argument is that the rush to get the code to work may cause
errors and that inspection before compilation is one sign of a professional programmer. Another sign
of professionalism, according to McConnell, is the move from superstition to understanding. The
improvement model presented here eliminates gut feeling and replaces it with data and process
understanding.

W' s, McConnell, Code Complete: A Practical Handbook of Software Construction (Redmond, WA:
Microsoft Press, 1993).

Development Throughput Model

Needless to say, the example models presented thus far are much simpler than the actual process
of software development. The most glaring omission is the fact that teams produce products and
rarely is the process as neatly contained as the models suggest. A team may begin work on one
requirement, and then move to a second requirement for a period of time, and then return to the
first requirement, and so on. A large team moves from area to area at various levels of abstraction,
producing partial products rather than a sequence of complete requirements. Leaping from area to
area may continue for the majority of the product development and is necessary to provide testable
units for the integration and system test processes. Some code is under development while other
code is being tested.

The iterative and chaotic nature of development is well known by most practitioners. As a result, a
realistic process contains feedback loops. For example, one team may be testing a portion of the
project, finding defects in the code that require another team to stop code development to fix the
existing product. This section examines a model that acknowledges such feedback processes.

Model Overview

For simplicity's sake, the model in Figure 9-31 examines the interactions between the development
and test processes without considering feature changes. The assumption is that a separate team
exists to system test the software to highlight the interactions between groups. This assumption can
be eliminated by simply splitting time among all four processes rather than just the two.

Figure 9-31. Model of separate development and testing
efforts
[View full size image]

Requirements

Defect
Code creation correction
rates rates
Development
| I time

Al Y

Create code] Fix defects
S e

[u

| | B 9 r L J

LOC Defocts Discovered 01h¢-r testing Churn Fixed code
defects activities defects

| ' [

l Test code —[Verify fix J

l—l ' .l—]

Defect Test time Defect
discovery verification
rates rates

L
Released
code

To examine the flow of information, assume that a set of known product requirements is available
from which to begin development. This is shown as the input to the development cycle in the
Requirements data store. After the handoff of a requirement to the development process, the
Create Code process begins. The creation of the code is modeled using the process previously
outlined with class size and LOC per class.

Developers create at a rate as determined by the Code Creation Rates using available Development
Time. Notice that developers must split their time between the Create Code and Fix Defects
processes. This is the first change from the simple model outlined earlier. Effort is split among two

processes rather than dedicated to a single task, thereby creating a dependency between
requirements, that is, requirement 2 is under development while requirement 1 is being fixed. It is
now likely that a developer may simultaneously be creating a new class while fixing a defect in an
existing one.

The output of the coding process is lines of code (LOC) and Defects. During the creation of code, the
developer may find defects in the existing product, and this information is stored in the Discovered
Defects database, creating yet another dependency between product features. Discovered Defects
form the input to the Fix Defects process.

After the creation of enough code, the testers can also begin to discover defects, and the active
defect count begins to rise. Discovering defects through test occurs at the rate defined by Defect
Discovery Rates and requires Test Time. The reason that developers must split their time between
the Create Code process and the Fix Defects process is to reduce the active defect count stored in
the Discovered Defect data store. If the defect count grows without an upper bound, a reasonably
sized product would not even compile. Often, teams implement some form of a maximum defect
count whose purpose it is to guarantee that the product will be of sufficient quality to compile and
allow the test team to work in parallel with the development team.

The Fix Defects process requires Development Time, taking away from the ability to Create Code. A
change to the new code created in the Create Code process causes Churn and results in Fixed Code
Defects. These fixes require testers to take time away from testing to Verify Fixes at a rate defined
by Defect Verification Rates. Once verified, the code is available for release and integration back
into future requirements. Notice that there is another process called Other Testing Activities, which
models defects discovered by sources outside the development cycle, such as through customer
reports.

With this model, you can simulate multiple activities per engineer. The dynamic nature of
development is contained in the simultaneous nature of the four main activities of creating code,
discovering defects, fixing defects, and verifying the fixes. Each of the four main processes could be
further broken down using methods described previously. However, even at this level, the dynamic
nature of the model adds significantly to the previous model. It also requires considerably more
code than do the sequential models described earlier.

Model Analysis

Running the model provides interesting insights into the delicate balance of a large development
team. Begin by assuming that enough feature requirements exist to occupy completely all of the
available Development Time. For the most part, this is a valid assumption because product planning
and marketing are working in parallel. Further, assume that the development team must operate
under a maximum defect count, or bug cap. That is, at some point the developers must stop
creating new code or, more flippantly, must stop creating new defects after the product reaches a
certain predefined discovered defect density. Again, this is probably a valid assumption to have a
product capable of at least some useful work. The development team begins the process by creating
code and the associated defects. After enough code is created to have a testable unit, the test team
begins finding defects, and at some point, discovered defects reach the bug cap, which probably
occurs long before running out of features for a product of any substantial size.

After developers reach bug cap, they must stop creating new code and fix existing code. With no
new code coming into the test process, the defect discovery rate begins to decrease, and the only
source of new defects is the Verify Fix process. Because this rate is very much less than the initial
creation rate, the developers eventually reduce the backlog of defects and start to code new
features. After this happens, testers have a new source of defects and once again reach bug cap,
causing the cycle to repeat.

In a typical organization, the rate of code creation balances the rate of defect discovery based on
the size of the various teams, the effort expended on each process, the efficiency of the test
process, and the quality of the code. Now imagine that the test team increases its efficiency
independent of the development team, that is, the development team production rates remain

constant while bug discovery rates increase. Developers reach bug cap sooner, which requires them
to stop coding as many features and thereby reduces the source of defects as before.

Reducing the number of features reduces the source of defects, meaning test will report fewer new
defects, so developers can go back to coding requirements. Increasing the efficiency of test pulls
developers away from coding new features sooner, thus reducing the available defect count, which
reduces the total defects found by test.

If you assume that most, if not all, of the features must be coded before release, the total
throughput of the system remains nearly constant. Individual components are released sooner, but
the entire product throughput remains mostly unchanged. This is an example of a principle
espoused by Peter Senge, namely, that the harder one pushes on a system, the harder the system
pushes back.™

W p. Senge, The Fifth Discipline: The Art and Practice of the Learning Organization (New York:
Currency Doubleday, 1990).

This development process is capable of a known throughput constrained almost entirely by the total
defects contained in the Defects data store. A change in any of the processes that use Defects
without consideration of the other processes causes a variation in the system that eventually
stabilizes at the prechange rates. Of course, this assumes that each process is stable to begin with.

From this model, and the previous detailed development model, the optimal process improvement is
to implement code inspections but use effort that would have gone into testing the product. If two
different teams exist, use the testers rather than developers to inspect the code.

Although it may not be possible to have 100 percent of the inspection effort come from the test
team, at least 50 percent and closer to 70 percent or 80 percent is possible. The inspection model
assumes 3 to 4 people inspect the code, so 2 or 3 of those can be members of the test team. Of
course, this assumes that the test team is composed of software engineers. If not, more extensive
training is required to implement this process change. However, the net effect of such a change is a
fundamental change in the relationship between quality and effort, which changes the system
throughput. Only such a fundamental change keeps the system from stabilizing at or near
prechange throughput levels.

This model was created to explicitly explore the system impact when a separate test group exists.
The two different forms of the model, namely, the sequential nature of the detailed quality model
versus the parallel nature of the development throughput model, provide differing views into many
organizational forms. As was said earlier, Microsoft uses separate development and test teams.
Many organizations use a single team, with members splitting their time across functions. The
models created apply to both types of organizations. The difference lies only in how the pdfs are
applied. For example, at a company like Microsoft, separate effort pdfs exist for development and
test functions, whereas an organization with a single engineering function would have a single pdf
split across code creation and defect detection activities. The model does not attempt to
differentiate across organizational forms, but it would be a logical progression for the modeler.

Relationship to the CMM Framework

The CMM has a level 4 capability known as Quantitative Process Management. The CMMI has a KPA
also, known as Quantitative Project Management, but with more detail about the expected use of
statistics to manage the process. The purpose of these practices is self-explanatory, that is, to use
quantitative methods for managing the processes used by the team. The practice in the CMMI uses
terms such as statistically managed and special causes, which seems to imply statistical process
control (SPC), as defined by Shewhart and as described extensively by Deming.[*! SPC is used for
prediction and has no signs of special cause variations. Such a process is said to be in statistical
control.

W w. Edwards Deming (1982). Out of the Crisis (Cambridge, MA: MIT Center for Advanced
Educational Services.)

Using SPC requires processes that are well controlled. Unfortunately, in software engineering the
sources of special cause variance are numerous, so much so that SPC may not be possible. Deming
cautions about the use of control charts for processes that are not in control. Management decisions
made about such processes are likely hit or miss. The inability to use SPC reliably often leads to the
creation of target values with little relationship to process capabilities. A desired target value with
some equally arbitrary range, based on a percentage of the target, is used to create a pseudo
process control chart. The target and range are then used to evaluate process changes.
Unfortunately, this often results in the chart changing based on a single data point. A process
change may be thought to cause variations in the data when, in fact, the discrepancy was simple
process variance. Stringent adherence to valid statistical methods is required if the desired result is
a good decision. Using ad-hoc statistics results in poor-quality management decisions.

Humphrey describes how the use of process is most appropriate at the individual level, and how
many elements of data cannot be compared among engineers. Additionally, processes, such as the
PSP described in Chapter 12, require that the individual take ownership of his or her process. If that
is the case, each individual will have a different process. Unless a team remains together for an
extended duration, the individual processes will change as team members change. Thus, the
individual processes that constitute the team's control charts will no longer be valid. SPC, at a team
level, will be ineffective under such circumstances and may actually be counterproductive, leading
to incorrect decisions.

If the variance between individuals is significant, SPC is not a valid technique for CMM and CMMI
level 4 capabilities. The control chart will have too large a range to provide any useful information.
Fortunately, stochastic models are another means of statistically managing the process. As shown in
Figure 9-20, the expected effort, and therefore the cost for the product, was estimated with a
confidence interval. If the process is broken down by phases, and each is estimated with such an
interval, the sub-processes are statistically managed. Additionally, the breakdown can be by product
or by engineer, providing additional insight into the process. A stochastic model will provide more
information and will not be susceptible to the problems associated with control charts. Schedule,
quality, and cost can all be predicted and controlled using the information provided by the model.

Another aspect of statistical management is determining the process improvement efforts in which
the organization will invest. As with the inspection example, it is quite easy to model estimates of
the effects of a change and simulate the results. Management can then determine which process
change will meet organizational needs on a project-by-project basis. In fact, it is unlikely that
traditional SPC will provide the same wealth of information as modeling because it does not provide
the ability to model the system as a whole. It is unable to explain the complex dependencies
between the development of the code and its testing.

Conclusion

Modeling the product quality and the process attributes provides a powerful means to estimate the
effects of defect prevention activities. Simple models provide information useful in project
management and in predicting the largest return on investment for process improvement.
Additionally, simple models can provide valuable insight into development, but you must not forget
the effect of the entire system.

Sequential models do not contain the richness necessary to evaluate system effects associated with
process change. Defect prevention activities may appear ineffective unless the dynamic aspects of
change are considered. Improving one practice often has unanticipated side effects. Therefore, a
skilled modeler uses a combination of simulation tools and a detailed understanding of the process
dynamics to determine the optimal defect prevention activity.

Although it is no trouble to create powerful simulations quickly and easily to determine predicted
outcomes, using the information developed by the model is much more difficult. The hardest part of
modeling is getting others in the organization to use the information. Those familiar with Greek

mythology may remember the story of Cassandra, who was given the gift of prescience and
subsequently cursed with disbelief by all those who heard the predictions. In many ways, those who
use stochastic modeling have the same gift and associated curse. Knowing the future requires the
courage to change it. As Scrooge remarks, "Ghost of the Future! | fear you more than any spectre |
have seen."

Chapter 10. Defect Taxonomies

A defect taxonomy provides a low-overhead means to learn about the kinds of errors being made in
the product development process so that they can be analyzed to improve the process to reduce or
eliminate the likelihood of the same kind of error being made in the future (in the current version of
the product under development as well as in future versions of the product and other products). A
defect taxonomy is a method of gathering indications of problem areas.

The general goal of a defect taxonomy is to reduce the number of product defects that reach
customers. Although this goal could be accomplished by implementing excessively long beta and
internal testing using certain sets of customers as "permanent"” beta sites, this kind of solution
wouldn't necessarily do anything to improve the quality of code produced—it would simply detect
and correct more defects before they reach the customer. Little learning may occur in correcting
defects in isolation and may not improve quality during development or for future products. The
learning that occurs resides in the minds of the developers, and as teams become larger it becomes
more difficult to share the accumulated learning.

Prevention of defects is intimately tied to the product cycle and the development processes used.
Defect prevention either moves detection of defects closer to their introduction in the product cycle
or reduces their introduction through prevention or immediate detection. The construction of a
defect taxonomy is based on the processes used in development and human error models, so we
begin this chapter with the background before discussing defect taxonomies.

Learning from Defects in Large Software Projects

After a software project grows beyond the scope of a few people, learning from defects becomes
more difficult. Not everyone knows everything about the code. Not everyone knows about or fixes
every bug. Distribution of effort in the development process can weaken shared knowledge. So how
do you recover accumulated learning about defects when defect correction is distributed?

Root cause analysis (RCA) is one method the product team can use to learn from defects (see
Chapter 11, "Root Cause Analysis"), but it can be a time-consuming process involving interviews
with the developers who fix the defects. In large projects, typically there are a large number of
defects—studies have shown that the number of defects is related to number of lines of code, so a
large number of defects should not be surprising. With a large number of defects, it is untenable to
perform an RCA study on every bug. There must be either a lower-overhead method of getting the
results of an RCA study or a means to focus RCA efforts on a subset of defects that may have the
greatest payoff. The prevention tab, discussed in Chapter 14, is a lower-overhead technique to
gather some salient root cause information.

However, to learn from every defect on a large scale, the effort of classifying the defect needs to be
distributed to the developers who correct the defects. IBM developed a technique called Orthogonal
Defect Classification (ODC), as described in the sidebar titled "Orthogonal Defect Classification,"
which follows. ODC uses a statistical method to learn from the type of defects that occur. When
they correct a defect, it takes very little effort for developers to fill out the classification forms, and
the classification produces useful, albeit limited, global information. In some cases, it can directly
indicate a root cause, but more often it identifies subsets of defects that could profit from more in-
depth analysis such as RCA.

A defect taxonomy extends the idea of statistical classification of defects to one that provides
classification and actionable global information. A defect taxonomy uses more categories to describe
a defect than ODC does. In so doing, a taxonomy can indicate a much broader set of hot spots and
even the kind of correction needed. It does require more effort to fill out than ODC but vastly less
than an RCA study.

A taxonomy can be used by developers during the development process to discover problem areas
that could profit from deeper analysis, such as RCA studies. The highlighting of problem areas
allows more expensive techniques such as RCA to be focused because such techniques can't be

applied to each defect on a large scale. Some indications from a defect taxonomy directly imply the
cause of the defect without resorting to an RCA study. A taxonomy can also help determine means
to detect, reduce, or eliminate causes of defects.

In small development teams, there is typically ad hoc learning about defects, but in large products
often too many people are involved and too many defects are detected for such learning to occur.

The key aspects of defect taxonomies are that they concern learning from defects rather than just
correcting defects and they scale for large projects where the numbers are overwhelming.

Orthogonal Defect Classification

ODC was developed at IBM™ by Ram Chillarege and is used to flag problem areas and the
state of code not matching the schedule. In ODC, you collect a few categories of
information about defects. It is a low-overhead method that provides immediate (no
extensive root cause analysis) indication of problem areas.

ODC taxonomies have three requirements. An ODC taxonomy should be

Orthogonal so that choices are clear and categories don't overlap.
Consistent across phases in the product cycle because defects are often detected
well after they are introduced.

e Uniform across products (and versions) so that resulting analysis can improve
future products and revisions.

A main attribute used in ODC is the defect type, which can be Function, Interface,
Checking, Assignment, Timing/Serialization, Build/Package, Documentation, Algorithm, or
Design. Many of these attributes purposefully reflect the phase in the product cycle that
produced them. The defect type category should span (include all possibilities) and relate
to product life cycle phases.

Classified defects can sometimes directly indicate a root cause without requiring a deeper
analysis. For example, function defects found late in the development cycle directly
indicate that there was a problem in the design phase—the design had functional holes.
Additionally, information on the distribution of defect types and trends indicating which
defect type occurs most often in specific product phases highlights problem areas.

W |BM Research, www.research.ibm.com/softeng/ODC/ODC.HTM; Chillarege,
www.chillarege.com/odc/odcbackground.html.

Specifying the Goals of a Defect Taxonomy

It's important to define the goals of a defect prevention project more clearly so that a taxonomy can
be created to highlight defect areas. The more specific goals are as follows:

e Detect defects earlier in the cycle.
Reduce the introduction of defects.
Prevent the introduction of defects. (It is better to make something impossible rather than
merely unlikely.)

e Improve efficiency as an indirect goal. (If developers are more efficient, they have more
time to fix defects and perhaps think more about root causes or other causes of defects. If
testers are more efficient, they can write more complete tests and reusable test code.)

Everyone has ideas about how to accomplish these goals. The problem is that the union of these
ideas is huge and the payback for a particular idea is not necessarily clear. A defect taxonomy

provides frequency information so that the product team can judge the payback on implementing an
idea. It may also, through lack of hits, indicate areas where the team is doing well or perhaps where
one group or component is doing better in a class of defect than others are. This can drive discovery
of best practices.

A defect taxonomy makes no assumption about what needs to be changed to improve quality. It
simply provides metrics so that you can discover areas that need attention and further analysis,
which can then suggest changes.

Understanding the Organizing Principles of Defect Taxonomies

A defect taxonomy is constructed using a few organizing principles that lead to the taxonomy's
major categories and subcategories:

Describe the entire product life cycle from scenarios to maintenance.

Avoid repetition of the same item in different categories or subcategories when possible.
Make items in a category clearly different (orthogonal) to avoid confusion.

Describe the defect correction process, including items for detecting/reducing/preventing
future occurrences.

e Work backward from the kinds of changes that may be ma